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Abstract

We introduce a dynamic noisy rational expectations model, in which information diffuses

through a general network of agents. In equilibrium, agents’ trading behavior and profits

are determined by their position in the network. Agents who are more closely connected

have more similar period-by-period trades, and an agent’s profitability is determined by a

centrality measure that is closely related to so-called Katz centrality. The model generates

rich dynamics of aggregate trading volume and volatility, beyond what can be generated

by heterogeneous preferences in a symmetric information setting. An initial empirical in-

vestigation suggests that price and volume dynamics of small stocks may be especially well

explained by such asymmetric information diffusion. The model could potentially be used

to study individual investor behavior and performance, and to analyze endogenous network

formation in financial markets.
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Ozsoylev, Elvira Sojli, Matas Šileikis, and Deniz Yavuz for valuable comments and suggestions.

†Haas School of Business, University of California at Berkeley, 545 Student Services Building #1900, CA
94720-1900. E-mail: walden@haas.berkeley.edu, Phone: +1-510-643-0547. Fax: +1-510-643-1420.



1 Introduction

There is extensive evidence that heterogeneous and decentralized information diffusion influences

investors’ trading behavior. Shiller and Pound (1989) survey institutional investors in the NYSE,

and find that a majority attribute their most recent trades to discussions with peers. Ivković and

Weisbenner (2007) find similar evidence for households. Hong, Kubik, and Stein (2004) find that

fund managers’ portfolio choices are influenced by word-of-mouth communication. Heimer and

Simon (2012) find similar influence from on-line communication between retail foreign exchange

traders.

Such information diffusion may help explain several fundamental stylized facts of stock mar-

kets. First, investors are known to hold vastly different portfolios, in contrast to the prediction

of classical models that everyone should hold the market portfolio. The standard explanations

for such diverse portfolio holdings are hedging motives and heterogeneous preferences, but sev-

eral studies indicate that there are limitations to how well such motives can explain observed

heterogeneous investor behavior.1 With decentralized information diffusion, however, it is un-

surprising if significantly heterogeneous behavior of investors is observed in the market. Second,

stock markets are known to experience large price movements that are unrelated to public news,

as documented in Cutler, Poterba, and Summers (1989), and Fair (2002). These studies find

that over two thirds of major stock market movements cannot be attributed to public news

events, suggesting that there are other channels through which information is incorporated into

asset prices. Third, the dynamics of trading volume and asset prices are known to be very rich.

Returns and trading volume in many markets are heavy-tailed, time varying, show “long mem-

ory,” and are related to each other in a complex way (see Gabaix, Gopikrishnan, Plerou, and

Stanley 2003; Karpoff 1987; Gallant, Rossi, and Tauchen 1992; Bollerslev and Jubinski (1999);

Lobato and Velasco 2000). Lumpy information diffusion provides a potential explanation for

such behavior. In periods when more information diffuses, volatility is higher, as is trading vol-

ume (see, Clark 1973; Epps and Epps 1976; Andersen 1996). To generate rich trading volume

dynamics, however, such information diffusion must necessarily be heterogeneous.

In this paper, we follow a recent strand of literature that uses information networks to model

information diffusion (see Colla and Mele 2010, Ozsoylev and Walden 2011, Han and Yang 2013,

and Ozsoylev, Walden, Yavuz, and Bildik 2013). Agents who are directly linked in a network

share information, which consequently diffuses among the population over time in a well-specified

manner. This literature has made important observations about effects of information networks,

but several key questions remain open. How does the network structure in a market determine

the dynamic trading behavior of its agents, and their performance? How does the network

structure influence aggregate properties of the market, e.g., price volatility and trading volume?

What does heterogeneous information diffusion “add” compared with, e.g., what can can be

1For example, Massa and Simonov (2006) find that hedging motives for human capital risk—a fundamental
source of individual investor risk—does not explain heterogeneous investment behavior among individual in-
vestors well. Similarly, Calvet, Campbell, and Sodini (2007) and Calvet, Campbell, and Sodini (2009) find that
diversification and portfolio rebalancing motives do not explain investors’ portfolio holdings well.
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generated by heterogeneous preferences alone? These questions are obviously fundamental for

our understanding of the impact of information networks on financial markets, and ultimately

for how well such information networks can explain observed investor and market behavior. In

this paper we analyze these questions.

We introduce a dynamic noisy rational expectations model in which agents in a network

share information with their neighbors. Agents receive private noisy signals about the unknown

value of an asset in stochastic supply, and trade in a market over multiple time periods. In each

period, they share all the information they have received up until that point with their direct

neighbors, leading to gradual diffusion of the private signals. The structure of the network is

completely general.

As a first contribution, we prove the existence of a noisy rational expectations equilibrium,

and present closed-form expressions for all variables of interest. Theorem 1 provides the main

existence and characterization result for a Walrasian equilibrium in a large network economy. To

define the large economy equilibrium, we use the concept of replica networks, assuming that that

there is a local network structure (e.g., at the level of a municipality) and that there are many

similar such local network structures in the economy. This allows for a clean characterization of

equilibrium, as well as justifies the assumption that agents act as price takers and are willing to

share information. We know of no other network model of information diffusion in a centralized

financial market (i.e., exchange) that allows for a complete characterization of equilibrium, that

is completely general with respect to network structure, and that is based on first principles of

financial economics.

The structure of the network is crucial in determining asset pricing dynamics. We show in

a simple example that price informativeness and volatility at any given point in time does not

only depend on the specific information agents in the model have obtained at that point, but

also on how the information has diffused through the network. The equilibrium outcome thus

depends on complex properties of the network, beyond the mere precision of agents’ signals at

any specific point in time.

We next study how the network structure determines the trading behavior and profitability

of agents. A priori, one may expect that portfolio holdings of agents who are close in the

network should be positively correlated, whereas their trades may be negatively correlated in

some periods, because some agents trade earlier on information than others and may be ramping

down their investments to realize profits when other agents are ramping up their investments.

We show that, contrary to this intuition, the period-by-period trades of agents in the network are

always positively related, and increasingly so in the degree of the overlap in their connectedness.

This result justifies the use of data on trades to draw inferences about network structure, as has

been done in previous studies, providing our second contribution.

As a third contribution, we study what determines who in the network makes profits. It

is argued in Ozsoylev and Walden (2011) and elsewhere that some type of centrality measure

should determine agent profitability.2 Centrality—a fundamental concept in network theory—

2In an empirical study, Ozsoylev, Walden, Yavuz, and Bildik (2013) study the trades of all investors on the
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captures the concept that it is not only who your direct neighbors are that matters, but also who

your neighbors’ neighbors are, who your neighbors’ neighbors’ neighbors are, etc. The argument

is that agents who are centrally placed tend to receive information signals early, and therefore

perform better in the market than peripheral agents, who tend to receive information later. It

is not a priori clear, however, which centrality measure—among several—that is appropriate in

this context.

We show that profitability is determined by a centrality measure related to eigenvector cen-

trality or, more generally, to so-called Katz centrality. To the best of our knowledge, this is the

first complete characterization of the relationship between agent centrality and performance in

a general information network model of financial markets. For large random networks, Katz

centrality dominates other common centrality measures in our model, i.e., it dominates degree

centrality, average distance and closeness centrality. We show in simulations that the ranking

of centrality measures also holds in medium-sized random networks. Thus, the use of central-

ity measures when studying individual investor behavior (e.g., in Ozsoylev, Walden, Yavuz,

and Bildik 2013) is theoretically justified. The result is quite intuitive: The Katz centrality

measure provides the best balance between direct connections and connections at farther dis-

tances, whereas degree centrality focuses exclusively on direct connections, and average distance

and closeness centrality are tilted toward connections at far distances. Our main results that

characterize trading behavior, profitability and welfare of agents, and the relationship between

centrality and profitability, are Theorems 2-4.

Our fourth contribution is to derive and analyze several aggregate results regarding the

dynamic behavior of price volatility and trading volume in the model. Specifically, the network

structure in an economy is an important determinant of volatility and trading volume in the

time series, as well as of the relationship between the two. Several stylized properties naturally

arise in the model, for example, persistence of shocks to volatility and trading volume, as well

as lead-lag relationships between the two.

We show that the rich dynamics of volatility and volume in our general information network

model cannot be generated by heterogeneous preferences alone in a symmetric network. Again,

the intuition is straightforward: With symmetry, there can be no bottlenecks in the information

network. This in turn implies that the rate of information diffusion over time must be unimodal,

i.e., it cannot slow down and then speed up again. Consequently, aggregate market dynamics

are restricted under symmetry, whereas (as we show) there are no such unimodality restrictions

in the general case.

Finally, we study volatility and volume of a sample of U.S. stocks. We compare Large Cap

and Small Cap companies, and find that the behavior of Small Cap companies is better explained

by asymmetric networks with a large degree of nonpublic information diffusion, suggesting that

information networks may be especially important for such stocks. Our theoretical results on

Istanbul Stock Exchange in 2005, and find a positive relationship between investors’ so-called eigenvector centrality
and profitability, but this choice of centrality measure is not theoretically justified. Several other finance papers
discuss and use various centrality measures without a complete theoretical justification, see e.g., Das and Sisk
(2005), Adamic, Brunetti, Harris, and Kirilenko (2010), Li and Schurhoff (2012) and Buraschi and Porchia (2012).

3



aggregate volume and volatility are summarized in Theorems 5-7.

The rest of the paper is organized as follows. In the next section, we discuss related literature.

In Section 3, we introduce the model and characterize equilibrium. In Section 4, we analyze

trading behavior and profitability of individual agents. In Section 5, we study the implications

of network structure for aggregate volatility and trading volume. Finally, Section 6 concludes.

All proofs are delegated to the appendix.

2 Related Literature

Our paper is most closely related to the recent strand of literature that studies the effects of

information diffusion on trading and asset prices. Colla and Mele (2010) show that the corre-

lation of trades among agents in a network varies with distance, so that close agents naturally

have positively correlated trades, whereas the correlation may be negative between agents who

are far apart. Their model is dynamic, and assumes a very specific symmetric network struc-

ture, namely a circle, where each agent has exactly two neighbors. This restricts the type of

dynamics that can arise in their model. Ozsoylev and Walden (2011) introduce a static rational

expectations model that allows for general network structures and study, among other things,

how price volatility varies with network structure. Their model is not appropriate for studying

dynamic information diffusion, however, and is therefore not well-suited for several of the ques-

tions analyzed in this paper, e.g., the relationship between agent profitability and centrality,

and the short-term correlation between agents’ trade.

Han and Yang (2013) study the effects of information diffusion on information acquisition.

They show that in equilibrium, information diffusion may reduce the amount of aggregate infor-

mation acquisition, and therefore also the informational efficiency and liquidity in the market.

Their model is also static, and does thereby not allow for dynamic effects. In an empirical

study, Ozsoylev, Walden, Yavuz, and Bildik (2013) test the relationship between centrality—

constructed from the realized trades of all investors in the market—and profitability. They find

that more central agents, as measured by eigenvector centrality, are more profitable. However,

they do not justify this choice of centrality measure theoretically. Pareek (2012) studies how

information networks—proxied by the commonality in stock holdings–among mutual is related

to return momentum.

A different strand of literature studies information diffusion through so-called information

percolation (Duffie and Manso 2007, Duffie, Malamud, and Manso 2009). In the original set-

ting, a large number of agents meet randomly in a bilateral decentralized (OTC) market and

share information, and the distribution of beliefs over time can then be strongly characterized.

Recently, the model has been adapted to centralized markets, with exchange traded assets and

observable prices—a setting more closely related to ours. For example, Andrei (2012), shows

that persistent price volatility can arise in such a model. In contrast to our model, in which

some agents may be better positioned than others, these models are ex ante symmetric in that

all agents have the same chance of meeting and sharing information.
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Babus and Kondor (2013) also introduce a model of information diffusion in a bilateral OTC

market. As in our paper, their network can be perfectly general. In contrast to our model, there

is no centralized information aggregation mechanism in their setting, and therefore no interplay

between diffusion through public and private channels. Moreover, agents have private values in

their model, and their model is static.

This paper is also related to the literature on information diffusion and trading volume

(Clark 1973). Lumpy information diffusion was suggested to explain heavy-tailed unconditional

volatility of asset prices, as an alternative to the stable Paretian hypothesis. Under the Mixture

of Distributions Hypothesis (MDH), lumpiness in the arrival of information lead to variation in

return volatility and trading volume, as well as a positive relation between the two (see Epps

and Epps 1976 and Andersen 1996). Foster and Viswanathan (1995) build upon this intuition to

develop a model with endogenous information acquisition, leading to a positive autocorrelation

of trading volume over time. Similar results arise in He and Wang (1995), in a model where an

infinite number of ex ante identical agents receive noisy signals about an asset’s fundamental

value. Admati and Pfleiderer (1988) explain U-shaped intra-daily trading volume in a model

with endogenous information acquisition.

Our paper further explores the richness of the dynamics of volatility and volume that arises

when agents share their signals, allowing for completely general asymmetry in how some agents

are better positioned than others. This extension may potentially shed further light on the

very rich dynamics of volatility and volume, and the relationship between the two (see Karpoff

1987, Gallant, Rossi, and Tauchen 1992, Bollerslev and Jubinski 1999, Lobato and Velasco 2000,

and references therein). A related strand of literature explores the role of trading volume in

providing further information to investors about the market, see Blume, Easley, and O’Hara

(1994), Schneider (2009), and Breon-Drish (2010). Our model does not explore this potential

informational role of trading volume.

Our study is related to the large literatures on games on networks, see the survey of Jackson

and Zenou (2012). The games in these models are typically not directly adaptable to a finance

setting. Our existence result and the characterization of equilibrium in a model based on first

principles of financial economics are therefore of interest. Since the welfare of agents in equilib-

rium can be simply characterized, our model could potentially also be used to study endogenous

network formation, see Jackson (2005) for a survey of this literature.

Finally, our paper is related to the (vast) general literature on asset pricing with heteroge-

neous information (see, e.g., the seminal papers by Grossman 1976, Hellwig 1980, Kyle 1985,

and Glosten and Milgrom 1985). Technically, we build upon the model in Vives (1995), who in-

troduces a multi-period noisy rational expectations model in a similar spirit as the static model

in Hellwig (1980). Like Vives, we assume the presence of a risk-neutral competitive market

maker, to facilitate the analysis in a dynamic setting. This simplifies the characterization of

equilibrium considerably. The cost of this assumption is that asset prices simply reflect the

expected terminal value of the asset conditioned on public information at all points in time.

Since our focus is on volatility and trading volume, this is a marginal cost for us. Unlike Vives,
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we allow for information diffusion among agents, through general network structures.

3 Model

There are N agents, enumerated by a ∈ N = {1, . . . , N}, in a T + 1-period economy, t =

0, . . . , T + 1, where T ≥ 2. We define T = {1, . . . , T}. Each agent, a, maximizes expected

utility of terminal wealth, and has constant absolute risk aversion (CARA) preferences with risk

aversion coefficient γa, a = 1, . . . , N ,

Ua = E[−e−γaWa,T+1].

We summarize agents’ risk aversion coefficients in the N -vector Γ = (γ1, . . . , γN ).

There is one asset with terminal value v = v̄ + η, where η ∼ N(0, σ2
v), i.e., the value is

normally distributed with mean v̄ and variance σ2
v . Here, v̄ is known by all agents, whereas η is

unobservable.

Agents are connected in a network, represented by a graph G = (N , E). The relation E ⊂ N×
N describes which agents (vertices, nodes) are connected in the network. Specifically, (a, a′) ∈ E ,
if and only if there is a connection (edge, link) between agent a and a′. We will subsequently

assume that there are many identical “replica” copies of this network in the economy, each copy

representing a “local” network structure. This will make the economy “large” and justify price

taking behavior of agents, as well as simplify the characterization of equilibrium. For the time

being, we focus on one representative copy of this large network.

We use the convention that each agent is connected to himself, (a, a) ∈ E for all a ∈ N ,

i.e., E is reflexive. We also assume that connections are bidirectional, i.e., that E is symmetric.

A convenient representation of the network is by the adjacency matrix E ∈ {0, 1}N×N , with

(E)aa′ = 1 if (a, a′) ∈ E and (E)aa′ = 0 otherwise.

The distance function D(a, a′) defines the number of edges in the shortest path between

agents a and a′. We use the conventions that D(a, a) = 0, and that D(a, a′) = ∞ whenever there

is no path between a and a′. The set of direct neighbors to agent a is Sa,1 = {a′ : (a, a′) ∈ E}.
Moreover, the set of agents at distance m > 1 from agent a is Sa,m = {a′ : D(a, a′) = m},
and the set of agents at distance not further away than m is Ra,m = ∪m

j=1Sa,m. The number of

agents at a distance not further away than m from agent a is Va,m = |Ra,m|. Here, Va,1 is the

degree of agent a, which we also refer to as agent a’s connectedness, whereas Va.m is agent a’s

mth order degree. We use the convention that Va,0 = 0 for all a. We also define ΔVa,m = |Sa,m|.
We define N -vectors V m, m = 1, . . . , N , where the ath element of V m is Va,m Equivalently,

Definition 1 The mth order degree vector, V m ∈ R
N
+ , m = 1, 2, . . . , is defined as

V m = χ(Em)1. (1)

Here Em is the mth power of the adjacency matrix, and χ : RN×N → {0, 1}N×N is a matrix
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indicator function, such that (χ(A))i,j = 0 if Ai,j = 0 and (χ(A))i,j = 1 otherwise. Moreover, 1

is an N -vector of ones.

First order degree is commonly referred to as degree centrality.

Finally, the number of agents within a distance of m from both agents a and a′ is Va,a′,m =

|Ra,m∩Ra′,m|, and the number of neighbors at distance exactly m from both agents is ΔVa,a′,m =

|Sa,m ∩ Sa′,m|

3.1 Information diffusion

At t = 0, each agent receives a noisy signal about the asset’s value, sa = v + σξa, where

ξa ∼ N(0, 1) are jointly independent across agents, and independent of v. At T + 1, the true

value of the asset, v, is revealed. It will be convenient to use the precisions τv = σ−2
v and

τ = σ−2.

The graph, G, determines how agents share information with each other. Specifically, at t+1,

agent a shares all signals he has received up until t with all his neighbors. We let Ia,t denote
the information set that agent a has received up until t, either directly or via his network.

It is natural to ask why agents would voluntarily reveal valuable information to their neigh-

bors. Of course, in a large economy with an infinite number of agents, sharing signals with ones’

(finite number of) neighbors has no cost, since the actions of a finite number of agents will not

influence prices. Even with an economy of finite size, as long as signals can be verified ex post,

truthful revelation may be optimal in a repeated game setting, since an agent who provides

misinformation can be punished by his neighbors, e.g., by being excluded from the network in

the future. Even if signals are not ex post verifiable, it may still be possible for an agent to draw

inferences about the truthfulness of another agent’s signal, by comparing it with other received

signals. Again, the threat of future exclusion from the network, could be used to enforce truthful

information sharing. We therefore take the truthful information sharing behavior of agents as

given. A potentially fruitful area for future research is to better understand in which finite sized

financial networks truthful signal sharing can be sustained.

As in Ozsoylev, Walden, Yavuz, and Bildik (2013), we formalize the information sharing role

of the network by defining

Definition 2 The graph G represents an information network over the signal structure {sa}a,
if for all agents a ∈ N , a′ ∈ N and times t = 1, . . . , T , sa′ ∈ Ia,t if and only if D(a, a′) ≤ t.

The information about the asset’s value that an agent has received through the network up until

time t can be summarized (as we shall see) by the sufficient statistic

za,t
def
=

1

Va,t

∑
j∈Ra,t

sj = v + ζa,t,
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where ζa,t =
Va,t

σ2 ξa,t, and ξa,t ∼ N(0, 1).3 The number of signals agent a receives at t is ΔVa,t,

and we therefore expect {ΔVa,t}a∈N ,t∈T to be important for the dynamics of the economy.

3.2 Market

The market is open between t = 1 and T + 1. Agents in the information network submit limit

orders, and a risk-neutral competitive market maker sets the price such that at each point in

time it reflects all publicly available information, pt = Et[v|Ip
t ], where Ip

t is the time-t publicly

available information set. At T + 1, the asset’s value is revealed so pT+1 = v. Before trading

begins, the price is set as the asset’s ex ante expected value, p0 = v̄.

To avoid fully revealing prices, we make the standard assumption of stochastic supply of

the asset. Specifically, in period t, noise traders submit market orders of ut per trader in the

network, where ut ∼ N(0, σ2
u). In other words, the noise trader demand is defined relative to

the size of the population in the information network. As argued elsewhere in the literature, the

noise trader assumption need not be taken literally, but is rather a reduced-form representation

of unmodeled supply shocks. It could, e.g., represent hedging demand among investors due to

unobservable wealth shocks, or other unexpected liquidity shocks. We do not further elaborate

on the sources of these shocks. We will use the precision τu = σ−2
u .

Agents in the network are price takers. At each point in time they submit limit orders

to optimize their expected utility of terminal wealth. They thus condition their demand on

contemporaneous public information, as well as on their private information. An agent’s total

demand for the asset at time t is

xa,t = argmax
x

E
[
e−γaWa,T+1|Īa,t

]
, (2)

subject to the budget constraint

Wa,t+1 = Wa,t + xa,t(pt+1 − pt), t = 1, . . . , T,

and his net time-t demand is Δxa,t = xa,t − xa,t−1, with the convention that xa,0 = 0 for all

agents. Here, Īa,t contains all public and private information available to agent a at time t.

In the linear equilibrium we study, za,t and pt are jointly sufficient statistics for an agent’s

information set, Īa,t = {za,t, pt}, leading to the functional form xa,t = xa,t(za,t, pt). Of course, an

agent’s optimal time-t strategy in (2) depends on the (optimal) future strategy. The dynamic

problem can therefore be solved by backward induction. The primitives of the economy are

summarized by the tuple M = (G,Γ, τ, τu, τv, v̄, T ).
We note that the assumption that the asset’s value is revealed at T + 1 means that any

residual uncertainty at T of the asset’s value is completely mitigated by T + 1. We think of

this as public information, which becomes available to all agents at T + 1. Alternatively, we

3A variation is to let agents receive new private signals in each time period. The analysis in this case is
qualitatively similar, but not as clean because of the increased number of signals.
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could have assumed that residual uncertainty is gradually incorporated into the market between

T and T ′ for some T ′ > T + 1, keeping the assumption that the information diffusion between

agents in the network only occurs until T .

The graph, G, determines how information diffuses in the network over time, whereas Γ

captures agent preferences. We wish to separate dynamics that can be generated solely by

heterogeneity in preferences from those that require heterogeneity in network structure. To

this end, we define an economy to be preference symmetric if γa = γ for all agents, and some

constant γ > 0. There are several symmetry concepts for graphs. The notion we use is so-called

distance transitivity.4 Informally, symmetry captures the idea that any two vertices can be

switched without the network changing its structure. To formalize the concept, we define an

automorphism on a graph to be a bijection on the vertices of the graph, f : N ↔ N , such that

(f(a), f(a′)) ∈ E if and only if (a, a′) ∈ E . A graph is distance-transitive if for every quadruple

of vertices, a, a′, b, and b′, such that D(a, b) = D(a′, b′), there is an automorphism, f , such

that f(a) = a′ and f(b) = b′. An economy is said to be network symmetric if its graph is

distance-transitive. Preference symmetric economies and network symmetric economies provide

useful benchmarks to which the general class of economies can be compared.

We point out that network symmetry does not imply that the same amount of information

is diffused among agents at each point in time. It does, however, still impose severe restrictions

on how information may spread in the economy, as shown by the following lemmas:5

Lemma 1 In a network symmetric economy, ΔVa,t is the same for all agents at each point in

time. That is, for each t, for each a, ΔVa,t = ΔVt for some common ΔVt.

Thus, in a network symmetric economy, all agents have an equal precision of information at any

point in time, although their signal realizations of course differ.

Lemma 2 In a network symmetric economy the sequence ΔV1,ΔV2, . . . ,ΔVT , is unimodal.

Specifically, there are times 1 ≤ t1 ≤ t2 ≤ T , such that ΔVt+1 > ΔVt for all t ≤ t1, ΔVt+1 = ΔVt

for all t1 < t ≤ t2, and ΔVt+1 < ΔVt for all t > t2.

In other words, the typical behavior of the information diffusion process in a network symmet-

ric economy is “hump-shaped,” initially increasing, after which it reaches a plateau and then

decreases.

3.3 Replica network

To justify the assumption that agents are price takers, the number of agents needs to be large.

Moreover, as analyzed in Ozsoylev and Walden (2011), restrictions on the distribution of number

4Other notions include vertex transitivity, distance regularity, arc-transitivity, t-transitivity, and strong regu-
larity, see Briggs (1993). Distance transitivity is a stronger concept than vertex transitivity, arc-transitivity, and
distance regularity, respectively, but neither stronger, nor weaker, than t-transitivity and strong regularity.

5The first result follows immediately from the fact that automorphisms preserve distances between nodes, see
Briggs (1993), page 118. The second result follows from Taylor and Levingston (1978), where the result is shown
for the larger class of distance regular graphs (see also Brouwer, Cohen, and Neumaier 1989, page 167).
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of connections are needed, to ensure existence of equilibrium. Ozsoylev and Walden (2011)

carry out a fairly general analysis of the restrictions needed on the degree distribution for the

existence of equilibrium to be guaranteed. They show that a sufficient condition is that the

degree distribution is not too fat-tailed. Compared with their static model, our model has

the additional property of being dynamic. Therefore, not only would restrictions on first-order

degrees be needed to ensure the existence of equilibrium, but also on degrees of all higher orders.

In the dynamic economy, signals spread over longer distances, thereby “fattening” the tail of

the distribution of signals among agents over time. We therefore believe that a general analysis

would be technically challenging, while adding limited additional economic insight, which is why

we choose the simplified approach.

We build on the concept of replica economies, originally introduced by Edgeworth (1881)

to study the game theoretic core of an economy (see also Debreu and Scarf 1964). We assume

that the full economy consists of a large number, M , of disjoint identical replicas of the network

previously introduced, and that agents’ random signals are independent across these replicas. A

replica network approach provides the economic and technical advantages of a large economy,

namely that price taking behavior is rationalized and that the law of large numbers makes most

idiosyncratic signals cancel out in aggregate, while avoiding the issues of signals spreading too

quickly among some agents, causing equilibrium to break down.

The total number of agents in the economy is N̄ = N ×M . Formally, we define the set of

agents in an M -replica economy as Am = N ×{1, . . . ,M}, where a = (i, j) ∈ Am represents the

ith agent in the jth replica network, in an economy with M replica networks. There is still one

asset, one market, and one competitive market maker in the market with N̄ agents. We use the

enumeration a = 1, . . . ,MN, of agents, where agent (i, j) maps to a = (j − 1)N + i.

Agent (i, j) and (i, j′) are thus ex ante identical in their network positions and in their

signal distributions, although their signal realizations (typically) differ. We let M increase in

a sequence of replica economies, with the natural embedding A1 ⊂ A2 · · · ⊂ Am ⊂ · · · , and
take the limit A = limM→∞AM , letting A define our large economy, in a similar manner as in

Hellwig (1980). The network G is thus a representative network in the large economy, A. Our

interpretation is that the network, G, represents a fairly localized structure, perhaps at the level

of a town or municipality in an economy, whereas A represents the whole economy.

At time t, the market maker observes the average order flow per agent in the network6

wt = ut +
1

N̄

N̄∑
a=1

Δxa,t. (3)

3.4 Equilibrium

We restrict our attention to linear equilibria in which agents in the same position in different

replica networks are (distributionally) identical. Such equilibria are thus characterized by the

6Technically, the market maker observes ut + limM→∞ 1
MN

∑MN
a=1 Δxa,t. We avoid such limit notation when

this can be done without confusion.
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behavior of agents a = 1, . . . , N , who are “representative.” Our main existence result is the

following theorem, that shows existence of a linear equilibrium in the large economy under

general conditions and, furthermore, characterizes this equilibrium.

Theorem 1 Consider an economy characterized by M. For t = 1, . . . , T , define

At =
τ

N

N∑
a=1

Va,t

γa
,

yt = τu(At −At−1)
2,

Yt =
t∑

s=1

ys,

Ca,t =

(
τv + τVa,t+1 + Yt+1

τv + τVa,t + Yt

)(
τv + Yt

τv + Yt+1

)(
1 + τVa,t

(
1

τv + Yt
− 1

τv + Yt+1

))
,

Da,t =
T∏

s=t+1

C−1/2
a,s ,

with the convention that A0 = 0, and YT+1 = ∞. There is a linear equilibrium, in which prices

at time t are given by

pt =
τv

τv + Yt
v̄ +

Yt

τv + Yt
v +

τu
τv + Yt

t∑
s=1

(As −As−1)us. (4)

In equilibrium, agent a’s time-t demand and expected utility, given wealth Wa,t and the realization

of signals summarized by za,t, take the form

xa,t =
τVa,t

γa
(za,t − pt), (5)

Ua,t = −Da,te
−γaWa,t− 1

2

τ2V 2
a,t

τv+Yt+τVa,t
(za,t−pt)2

. (6)

Several observations are in place. First, note that the price function (4) has a fairly standard

structure. It is determined by the fundamental value (v) and the aggregate supply shocks (us,

s = 1, . . . , t). The weights on these different components are determined by how signals spread

through the network. Especially, At summarizes how aggressive—and thereby informative—the

trades of agents are at time t, consisting of a weighted average of t-degree connectivity of all

agents. The variable Yt corresponds to a cumulative average of squared innovations in A up until

time t, and determines how much of the fundamental value that is revealed in the price. The main

generalization compared with Vives (1995) is that Va,t varies with agent and over time, depending

on the network structure. Moreover, preferences are allowed to vary across agents, through γa.

This allows us to compare the equilibrium dynamics that may arise because of heterogeneous
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preferences with the dynamics that may arise because of heterogeneous information diffusion.

It is notable that Yt does not only depend on the total amount of information that has been

diffused at time t, but also on how this information has diffused over time. In other words

the price at a specific point in time is information path dependent. For example, consider two

economies with 4 agents, all with unit risk aversion (γa = 1), and with parameters τ = τv =

τu = 1. The first network, shown in panel A of Figure 1, is tight-knit (it is even complete) with

every agent being directly connected to every other agent. It is straightforward to calculate

V1,a = V2,a = 4, A1 = A2 = 4, Y1 = Y2 = 16, via (4) leading to p2 − v ∼ N
(
0, 1

17

)
. The second

network, shown in Panel B of Figure 1, is not as tightly knit, and agents have to wait until t = 2

before they have received all signals. In the latter case, V1,a = 3, V2,a = 4, A1 = 3, A2 = 4,

Y1 = 9, Y2 = 16, via (4) leading to p2−v ∼ N
(
0, 1

11

)
. Thus, the price at t = 2 is less revealing in

the second case, even though all agents have the same information at t = 2 in both economies.

The reason is that in the tight-knit economy, the information revelation is more lumpy, whereas

it is more gradual in the less tight-knit economy. Lumpy information diffusion leads to more

revealing prices, since it generates more aggressive trading behavior in some periods, in turn

making it easier to separate informed trading from supply shocks. This is our first example of

how the network structure impacts asset price dynamics.

A. B.

Figure 1: Impact of network structure. The figure shows two networks with four agents: In Panel
A, a tight-knit network is shown, in which every agent is connected with every other agent. In panel B, a
less tight-knit network is shown. At t = 2, prices are more revealing in the tight-knit network, since the
aggregate information arrival has been more lumpy, in turn leading to more revealing trading behavior
of informed agents.

4 Trading, profits, and centrality of individual agents

We study how the trades and performance of agents are determined by their positions in the

network.
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4.1 Correlation of trades

Feng and Seasholes (2004) studied retail investors in the People’s Republic of China, and found

that the geographical position of investors was related to the correlation of their trades: geo-

graphically close investors had more positively correlated trades than investors who were farther

apart. Colla and Mele (2010) showed that information networks can give rise to such patterns

of trade correlations, under the assumption that geographically close agents are also close in the

information network. Their analysis was restricted to a cyclical network, but the effect was also

shown to arise in general networks in the static model of Ozsoylev and Walden (2011).

In Ozsoylev, Walden, Yavuz, and Bildik (2013), this positive relationship between trades and

network position was used to reverse engineer a proxy of the information network in the Istanbul

Stock Exchange from individual investor trades. Loosely speaking, agents who repeatedly traded

in the same stock, in the same direction, at similar points in time, were assumed to be linked in

the market’s information network. Such an approach is justified in the static model of Ozsoylev

and Walden (2011), but the situation is more complex in a dynamic setting. Specifically, one

may expect a positive relationship between network proximity and portfolio holdings also in

the dynamic model, since agents who are close in the network have many overlapping signals

and thereby similar information, leading to similar portfolio holdings. However, whereas agents’

trades and portfolio positions are equivalent in the static model, they are not in a dynamic

model. Instead, portfolio holdings are equivalent to cumulative period-by-period trades in the

dynamics model. For period-by-period trading behavior, the timing of information arrival is

also important, and this timing is different even for agents who are close in the network.

Consider, for example, an economy in which one agent, a, is connected to many other agents

at a distance t, and therefore receives very precise information about the asset’s value at time

t. This agent will at t take a large position in the asset (positive or negative, depending on

whether the agent believes that it is under- or over-valued). Moreover, assume that one of

agent a’s neighbors, agent b, does not have many connections within a distance of t but, being

connected to a, receives a lot of information at t + 1. Now, assume that at t + 1 there is also

a substantial amount of information incorporated into the asset’s price (driven by many other

agents who are also connected to many agents at distance t+ 1). In this case, agent b will take

on a similar position as agent a at time t+1, although less extreme since the price will be closer

to the fundamental value at this point. Agent a, however, may actually decrease his position, to

realize profits and decrease risk exposure. This argument suggests that the time t+ 1 trades of

the two agents are negatively correlated, although they are neighbors in the network. Thus, the

period-by-period relationship between network proximity and correlation of trades seems less

clear than that between network proximity and portfolio holdings, suggesting that one needs

to be careful in choosing an appropriate window length when inferring network structure from

observed trades.

The following theorem characterizes covariances of trades, for an individual agent over time,

and between agents at a specific point in time.
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Theorem 2 The covariance between an agent’s trade at t and t+ 1 is

Cov(Δxa,t+1,Δxa,t) =
τ

γa
ΔVa,t

(
Va,t+1

τv + Yt+1
− Va,t

τv + Yt

)
. (7)

The covariance of agent a and b’s trades at time t is

Cov(Δxa,t,Δxb,t) =
τ2

γaγb

(
yt

(τv + Yt−1)(τv + Yt)
Va,t−1Vb,t−1 +

ΔVa,tΔVb,t

τv + Yt
+ΔVa,b,t

)
. (8)

Equation (7) shows that in the special case when an agent does not receive any new signals (and

thus ΔVa,t = 0), the covariance between time t and t + 1 trades is also zero. This is natural

since the agent’s trades in this case depends solely on price changes, and the price process is

a martingale. In the more interesting case when the agent does receive signals, the covariance

between subsequent trades is determined by the information advantage of the agent over the

market at t and t+ 1, respectively. Specifically, Va,t represents how much information agent a

has received at time t, whereas τv + Yt represents how much aggregate information has been

incorporated into prices. A high Va,t relative to τv + Yt, means that the agent has a substantial

information advantage at time t. If the information advantage increases between t and t + 1,

then agent a’s trades will be positively correlated over these two periods, representing a situation

where he tends to ramp up investments. If, on the other hand, agent a’s information advantage

decreases, his trades will be negatively correlated, representing a situation where he takes home

profits and decreases risk exposure by selling stocks (or buying, if in a short position), in line

with our previous discussion.

An example of the two different situations is shown in Panels A and B of Figure 2. In Panel

A, agent a is at the center of an extended star network and will have a large advantage over

the market at t = 1. At t = 2, the playing field is more even, since information diffusion has

made all of agent a’s neighbors well-informed too. Agent a still has an information advantage,

now having received all signals from the periphery of the network, but the advantage is lower

than in the previous period, and he therefore decreases his asset position, leading to a negative

correlation of his trades over the two periods. In Panel B of the figure, agent a still receives

the same signals period-by-period, but since his neighbors are now more directly connected, his

information advantage at t = 1 is smaller. In this case, his information advantage may be higher

in period 2 than in period 1, so he may tend to gradually ramp up up his position over the two

time periods and therefore have positively correlated trades.

We note that this intuition, that relative information advantage over time determines an

agent’s dynamic trading behavior, which is very clear in the general setting, does not come

out clearly if we restrict our attention to symmetric networks. Indeed in a network symmetric

economy, ΔVa,t is the same for all agents, and it can be shown that (7) takes the form

Cov(Δxa,t+1,Δxa,t) =
τ

γa
ΔVt+1ΔVt

(
τv + Yt −

τ

γ̄
VtΔVt+1

)
.
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Thus, all else equal, for low degrees of information diffusion between t and t + 1 (i.e., a low

ΔVt+1), trades will be positively correlated, whereas they will be negatively correlated when the

degree of information diffusion is high (i.e., for a high ΔVt+1). This result is the opposite of

what we just showed.

The issue in the symmetric case is that within the class of network symmetric economies,

connectivity must increase for all agents at the same time, so there is no way to increase the

relative information advantage of one agent. Increasing the connectivity of all agents at the same

time has two effects: it increases the total informativeness of their signals and it increases the

amount of information that is incorporated into the asset’s price, and the second effect always

dominates. Thus, increased connectivity at t+1, all else equal, always decreases the information

advantage of the agents in a symmetric network setting, making them decrease their portfolio

holdings, and thereby potentially leading to negative correlation with their trades in the previous

period. This is our first example of how restricting ones’ attention to symmetric economies may

be misleading—in this case reversing the result.

We next focus on Equation (8), which shows how the time-t trades of two agents are related.

The first two terms in the expression represent covariance induced by the fact that two informed

agents will tend to trade in the same direction because, both being informed, they will take

a similar stand on whether the asset is over-priced or under-priced. This part of the expres-

sion increases in the total amount of information the agents have received at t − 1 (through

Va,t−1Vb,t−1), as well as in how much additional information they expect to receive between

t− 1 and t (through ΔVa,tΔVb,t). Offsetting these effects is the aggregate informativeness of the

market, through the terms yt
(τv+Yt−1)(τv+Yt)

and 1
τv+Yt

, similarly to what we saw in (7). The third

term in the expression provides an additional positive boost to the covariance, and is increasing

in the number of common agents at distance t of both agent a and b. This term is zero if the

agents are further apart than a distance of 2t, but will otherwise typically be positive. The term

captures the natural intuition that agents who receive identical information signals have more

similar trades than agents who receive signals with independent error terms.

The first main implication of (8) is that the covariance is always strictly positive. Thus, the

situation with negative correlation between trades—because two nearby agents tend to trade

in different directions when one is ramping down portfolio exposure whereas the other one is

ramping up—never occurs in the model. To understand why this is the case, we use (5) to

rewrite agent a’s time-t demand as

Δxa,t =
τ

γa

(
ΔVa,t

(∑
j∈ΔSa,t

sj

ΔVa,t
− pt

)
− Va,t(pt − pt−1)

)
.

The first term in this expression represents the agent’s demand because of additional information

received between t − 1 and t. We note that
∑

j∈ΔSa,t
sj/ΔVa,t = v + ζa, where the error term

ζa ∼ N(0, σ2/ΔVa,t) is independent of prices. The second term represents the agent’s sloping

demand curve, causing him to rebalance portfolio holdings when the price catches up, by selling

(buying) stocks when the price increases (decreases) between t− 1 and t. For an agent who has

15



an information advantage at time t − 1, but receives no new information between t − 1 and t,

this second term is the only one present (since ΔVa,t = 0).

Now, agent b’s demand function has the same form as agent a’s and, assuming that agent

b receives a lot of new information between t − 1 and t, the first term dominates. Negative

correlation would then arise if agent b tends to ramp up when agent a ramps down, which

is the case if Cov
(
v + ζb − pt,−(pt − pt−1)

)
< 0. However, since the market is semi-strong

form efficient, v − pt is independent of pt − pt−1. Furthermore, since ζb is independent of

aggregate variables, Cov
(
ζb,−(pt − pt−1)

)
= 0. In other words, since agent a’s rebalancing

demand between t− 1 and t is publicly known at t, it must be independent of agent b’s time-t

demand which in turn is due to informational advantage at time t.

This result is model dependent. It depends on the linear structure of agents’ demand func-

tions. However, to a first order approximation we expect the result to hold in more general set-

tings in semi-strong form efficient markets, given that trading for rebalancing purposes mainly

depends on price changes, trading for informational purposes depends on the difference between

the true value and market price, and the two terms are uncorrelated in a weak-form efficient

market.

The second main implication of (8) is that, all else equal, period-by-period covariances (and

correlations) between two agents’ trades increase in the number of common acquaintances they

have (through the ΔVa,a′,t-term). As an example, in Panel C of Figure 2, we show a cyclical

network. It immediately follows that the correlation between two agents’ trades at any time

t < 4 (at which point all information has reached all agents) is decreasing in the distance between

the two agents.

These properties of trade correlations suggest that it may be justified to use trades instead

of portfolio holdings to draw inferences about a market’s information network as, e.g., done in

Ozsoylev, Walden, Yavuz, and Bildik (2013), using short time horizons over which trades are

compared.

a

A.

a

B. C.

Figure 2: Correlation of trades. The figure shows three networks that lead to different types of
trading behavior. Panel A shows a network in which agent a’s trades at time 1 and 2 are negatively
correlated, whereas they are positively correlated in Panel B. Panel C shows a network in which the
correlation between two agents’ trades, at each point in time, is inversely related to the distance between
the two agents.
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4.2 Profits

Who makes profits in an information network? Our starting point is the following theorem:

Theorem 3 Define

πa,t = τVa,t

(
1

τv + Yt
− 1

τv + Yt+1

)
, t = 1, . . . , T − 1, a = 1, . . . , N

πa,T = τ
Va,T

τv + YT
, a = 1, . . . , N.

The ex ante certainty equivalent of agent a is

Ua =
1

2γa
log(C), where C =

T∏
t=1

(1 + πa,t) . (9)

The expected profit of agent a is

τ

γa
Πa, (10)

where

Πa =

T∑
t=1

(τv + Yt)
−1Va,t (11)

is the profitability of agent a.

We focus on profitability, and leave welfare implications of the model for future research.

Equation (10) determines (ex ante) expected profits of an agent. It shows that expected profits

depends on three components. First, profits are inversely proportional to an agent’s risk-aversion,

γa, because more risk-averse agents take on smaller positions—all else equal. This follows

immediately, since an agent’s equilibrium trading position is proportional to γa, so it corresponds

to pure scaling. Therefore, we do not include it in our measure of profitability, as defined by

Equation (11). Neither do we include the signal precision, τ , which is constant across agents.

Second, expected profits depend on an agent’s position in the network through {Va,t}t, t ∈ T : the

higher any given Va,t is, the higher the agent’s expected profits. Third, expected profits depend

inversely on the amount of aggregate information available in the market, in that at any given

point in time, the higher the total amount of aggregate information, the lower the expected

profits of any given agent. The third part represents a negative externality of information.

Equation (11) thus provides a direct relationship between the properties of a network, local as

well as aggregate, and individual agents’ profitability.
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4.3 Centrality

Equation (11) shows that an agent’s profitability is determined by his centrality, defined appro-

priately. Recall that Va,t denotes the number of agents that are within distance t from agent a.

So, Va,1 is simply the degree of agent a. For t > 1, higher order connections are also important

in determining profitability. For example, Va,2 does not only depend on how connected agent a

is, but also on how connected his neighbors are. We use (1) to rewrite (11) on vector form as

Π =
∞∑
t=1

βtχ(E
t)1, (12)

where βt = (τv + Yt)
−1, for t ∈ T , and βt = 0 for t > T . Here, Π is an N -vector where the ath

element is the profitability of agent a.

We explore the relationship between this profitability measure and standard centrality mea-

sures in the literature. Specifically, we define degree centrality, farness, closeness centrality, Katz

centrality, and eigenvector centrality (see, e.g., Friedkin (1991) for a detailed discussion of these

concepts), and compare (12) with these measures.

Definition 3

• The degree centrality vector is the vector of first-order degrees, V 1, i.e., the degree cen-

trality of agent a is Va,1.

• The farness of agent a is the agent’s average distance to all other agents, i.e.,

Fa =

∑
a′ �=aD(a, a′)

N − 1
.

• The closeness centrality of agent a, Ĉa, is the inverse of that agent’s farness,

Ĉa =
1

Fa
.

• The Katz centrality vector with parameter α < 1 is the vector K ∈ R
N
+ , defined as

K = Kα =
∞∑
t=1

αtEt1. (13)

Here, Et denotes the t:th power of the adjacency matrix, E, and 1 ∈ R
N is an N -vector

of ones.

• The eigenvector centrality vector is the eigenvector corresponding to the largest eigen-

value of E, i.e., the vector C that solves the equation C = λEC, for the largest possible

eigenvalue, λ, where we normalize C such that
∑

a∈N Ca = 1.
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We see that the structures of the profitability measure (12) and Katz centrality (13) are similar.

Specifically they are both made up by a weighted sum of powers of the adjacency matrix,

multiplied with the vector of ones. The differences are that the weighting is a power of α for

Katz centrality but varies more generally with t for profitability, and that the matrix indicator

function, χ, operates on the power of the adjacency matrix in the profitability measure. It is

a standard result that eigenvector centrality can be viewed as a special case of Katz centrality,

since C = limα↗λ−1
Kα∑
a Kα

a
.7

The similar structure of the formulas for profitability (12) and Katz centrality (13) suggests

that Katz centrality is closely related to profitability, as is eigenvector centrality being a special

case of Katz centrality. Therefore, we may expect Katz and eigenvector centrality to dominate

the other measures for “an average” network, although there may be exceptions.

To formalize this intuition, we introduce a random network generating process, which allows

us to derive a probabilistic ranking of the different measures. We use the classical concept

of random graphs, originally studied in Erdös (1947), Erdös and Rényi (1959), and Gilbert

(1959), in which links between agents are formed randomly, independently, and with constant

probability.8

Our focus is on sparse networks—in line with what is observed in practice (see the discussion

in Ozsoylev, Walden, Yavuz, and Bildik (2013)). We assume that the expected number of links

per agent in a network of size N is c log(N)k + 1 for some c > 0 and k > 3.9 With this

assumption, the connectedness of agents grows with N , but the fraction of expected connections

in the network (which is approximately cN log(N)k/2) to maximum number of connections

(which is approximately N2/2) tends to zero for large N , so when N is large the network is

indeed sparse. To this end, we define

Definition 4 The Erdös-Rényi random graph model of size N , and parameters c > 0, and

k > 3, G(N, c, k), is defined so that for each 1 ≤ a ≤ N , 1 ≤ a′ ≤ N , a 
= a′, (a, a′) ∈ E with

i.i.d. probability c log(N)k

N−1 .

We use cross sectional correlation across agents as the metric of similarity.10 Specifically,

for a given network we define the cross sectional correlation between the different centrality

measures and profitability,

ρD = Corr(D,Π), ρF = Corr(−F,Π), ρĈ = Corr(Ĉ,Π), ρKα = Corr(Kα,Π), ρC = Corr(C,Π).

7Uniqueness of the eigenvector centrality measure is not guaranteed, but is almost never an issue in practice.
8We focus on the Erdös-Rényi model, since it is the most parsimonious and analytically most tractable. Many

other network generating processes have also been suggested in the literature, e.g., the preferential attachment
model of Barabasi and Albert (1999), and the model of Watts and Strogatz (1998).

9The restriction k > 3 is needed for technical reasons.
10The cross sectional statistics are defined as EX = 1

N

∑
a∈N Xa, σ2(X) = E[(X − EX)2], Cov(X,Y ) =

E[(X − EX)(Y −EY )], and Corr(X,Y ) = Cov(X,Y )/(σ(X)σ(Y )).
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Here, we use the convention that the correlation between any random variable and a constant is

zero. In the random network model, these cross sectional correlations are in turn random, since

they depend on the random realization of the network. Note that ρF is defined as the correlation

between negative farness and profits, since farness is inversely related to connectedness.

For simplicity, we focus on preference symmetric economies, but allow for γ, τ , τu, τv, v̄, and

T to be arbitrary. The following result shows that Katz centrality dominates degree centrality,

farness, and closeness centrality for large random graphs.

Theorem 4 For any given c > 0 and k > 3, there is an N0, such that for all networks of size

N > N0 in the G(N, c, k) model, there is an α, such that

E [ρKα] > E [ρD] > max
(
E
[
ρĈ
]
, E [ρF ]

)
. (14)

Thus, for large random networks, profitability is best characterized by Katz centrality. This re-

sult provides a strong ranking between different centrality measures for a large class of networks.

To the best of our knowledge, this is the first such ranking of centrality measures in equilibrium

models of asset pricing with general networks. In contrast, previous applications of network

theory to asset pricing typically provide results for very specific networks (e.g., Ozsoylev 2005,

Colla and Mele 2010, and Buraschi and Porchia 2012), or is empirically motivated (e.g., Das and

Sisk 2005, Adamic, Brunetti, Harris, and Kirilenko 2010, Li and Schurhoff 2012, and Ozsoylev,

Walden, Yavuz, and Bildik 2013,). The challenge in proving the result stems from the fact that

profitability is determined endogenously in equilibrium.

The intuition behind the result is straightforward, as shown in the proof of the theorem,

suggesting that it may extend to more general settings. The profitability equation (12) is

made up by a weighted average of the connectedness of different orders (with the weights,

βt, endogenously determined). Degree centrality exclusively focuses on first-order connections,

whereas closeness centrality and farness mainly focus on high-order connections (since the vast

majority of agents will be quite far away from any given agent in a large network). Katz and

eigenvector centrality, in contrast, balance the weights of different orders of connectedness, and

are thereby more closely related to profitability.

Of course, our strong ranking of centrality measures holds only for large networks. We also

explore the relationship between the different centrality measures in medium-sized networks

using simulations, to verify that Katz centrality also works well in such networks. We randomly

simulate 1,000 economies of sizes N = 50, 100, 200, 500, and 1000, respectively, and in each

economy we randomly generate links between agents, using the random graph model, so that

each agent is expected to have
√
N links. The growth of the number of links in the network with

N is thus slightly faster than in the G(N, c, k) model, although the graph is still asymptotically

sparse.

We measure the correlation between profitability (Π) and the different centrality measures.

The results are shown in Table 1. We see that the ranking is the same as in Theorem 4 and,
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Size of network, N C Kα V 1 Ĉ F

50 0.96 0.96 0.88 0.0 0.0
100 0.94 0.94 0.82 0.0 0.0
200 0.94 0.94 0.79 0.0 0.0
500 0.95 0.95 0.83 0.0 0.0
1000 0.97 0.97 0.85 0.0 0.0

Mean correlation 0.95 0.95 0.83 0.0 0.0

Table 1: Centrality Measures. The table shows the correlation between profitability, Π, and centrality
for several different centrality measures, degree centrality (V 1)), eigenvector centrality (C), Katz central-
ity (Kα), closeness centrality (Ĉ) and farness (F ). The parameters of the economy are σ = σu = σv = 10,
v̄ = 0, T = 5, and γ = 1 for all agents. The number of agents is varied between N = 50 and N = 1000,
and links are randomly drawn between agents, such that on average an agent has

√
N links. For each

N , we simulate 1, 000 random networks. The results show that eigenvector and Katz centrality are most
closely related to profitability, followed by degree and betweenness centrality. Closeness centrality and
farness perform poorly, since there is usually an isolated agent in the network, leading to all agents having
closeness centrality of zero and infinite farness centrality.

furthermore, that eigenvector centrality, being a special case of Katz centrality, performs about

as well as the Katz centrality measure.

5 Aggregate volatility and trading volume

According to the Mixture of Distributions Hypothesis (MDH), return volatility varies over time,

which then leads to heavy-tailed unconditional return distributions. A common explanation for

such time varying volatility—as well as trading volume—is lumpy diffusion of information into

the market (Clark 1973; Epps and Epps 1976; Andersen 1996).

Rich dynamics of volatility and trading volume have indeed been documented in the liter-

ature. First, trading volume is positively autocorrelated over extended periods, i.e., the au-

tocorrelation function of trading volume has “long memory” in that it decreases very slowly

(see Bollerslev and Jubinski 1999 and Lobato and Velasco 2000). Roughly speaking, this means

that abnormally high trading volume one period predicts abnormally high trading volume for

many future periods. Second, return volatility of individual stocks, and markets, also have long

memory (e.g., Bollerslev and Jubinski 1999 and Lobato and Velasco 2000). Third, volume and

volatility are related (Karpoff 1987; Crouch 1975, Rogalski 1978), in line with the Wall Street

wisdom that it takes volume to move markets. Contemporaneously, trading volume and ab-

solute price change are highly positively correlated. The two series also have positive lagged

cross-correlations. Using a semi-parametric approach to study returns and trading volume on

the NYSE, Gallant, Rossi, and Tauchen (1992) show that large price movements predict large

trading volume. In other markets, there is evidence for a reverse casualty, i.e., that large trad-

ing volume leads large price movements. For example, Saatcioglu and Starks (1998) find such

evidence in several Latin American equity markets.
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In our model, agents’ preferences (Γ) and the network structure (E) determine volatility

and volume dynamics in the market. It is then natural to ask which type of dynamics can be

generated within the model for general Γ and E , and also what one can infer about the network

structure from observed volatility and volume dynamics.

5.1 Volatility

In a general network economy, we would expect price volatility to vary substantially over time.

For example, information diffusion may initially be quite limited, with low price volatility as

an effect, but eventually reach a hub in the network, at which point substantial information

revelation occurs with associated high price volatility. The following result characterizes the

price volatility over time, and moreover shows that any volatility structure can be supported in

a general economy.

Theorem 5 For t = 1, · · · , T , the variance of prices between t− 1 and t, is

σ2
p,t =

yt
(τv + Yt)(τv + Yt−1)

, (15)

where we use the convention that Y0 = 0, and between T and T + 1, it is

σ2
p,T+1 =

1

τv + YT
. (16)

Moreover, given coefficients, k1, . . . , kT+1, such that kt > 0, and
∑T+1

t=1 kt = 1 and an arbi-

trarily small ε > 0, there is a preference symmetric economy, such that∣∣∣∣σ2
p,t −

kt
τv

∣∣∣∣ ≤ ε, t = 1, . . . , T + 1. (17)

From the first part of the theorem, we see that the volatility (the square root of variance) has

a general decreasing trend over time because of the increasing denominator in (15), but that it

can still have spikes in some time periods because of large values in the numerator. In fact, (17)

shows that any structure of time-varying volatility after an information shock can be generated.

Note that the total cumulative variance up until time t ≤ T is

σ2
P,t =

1

τv

Yt

τv + Yt
. (18)

This part of the variance that is incorporated until T represents the “information diffusion”

component of asset dynamics, whereas the part between T and T + 1, i.e., (16), represents the

component due to public information sources, in line with the discussion in Section 3.2. The
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total price variance between 0 and T + 1 is of course equal to the ex ante variance,

σ2
v = σ2

P,T + σ2
p,T+1 =

1

τv

YT

τv + YT
+

1

τv + YT
,

independently of network structure. But the way the variance is divided period-by-period, and

into the information diffusion and public component, depends on the network. It is specifically

determined by yt, t = 1, . . . , T .

If we restrict our attention to network symmetric economies, the possible dynamic behavior

of volatility is much more restricted. This is not surprising, given the restrictions on information

diffusion dynamics described in Lemmas 1 and 2. From (18), it follows that yt is proportional

to Δηt = ηt − ηt−1, where ηt =
1

σ2
v−σ2

P,t
. Since yt is proportional to ΔV 2

t (which is the same for

all agents in a network symmetric economy), ΔVt is unimodal, and the square of a nonnegative

unimodal function is also unimodal, it follows that the sequence Δη is also unimodal. Moreover,

if the public information component is large compared with the diffusion component, σ2
P,T <<

σ2
v , it follows from (18) that

σ4
vΔηt ≈ σ2

p,t, (19)

so in this case σp,t is also unimodal. We summarize this in

Corollary 1 In a network symmetric economy,

1. Δηt is unimodal,

2. if the public information component is high, σ2
P,T << σ2

v, then σp,t is unimodal.

Of course, the timing of an information shock is typically not known. We have in mind

a situation in which information shocks arrive every now and again, and are then gradually

incorporated into prices. We do not observe the timing of these shocks, and therefore do not

know when t = 0 in our model.

However, autocorrelations — which take averages over all time periods — can be calculated

even without observing the timing of shocks. Now, there is a close relationship between a func-

tion’s shape and the shape of its autocorrelation function. For a general sequence, f0, f1, . . . , fT ,

we define the difference operator (Δf)k = fk − fk−1, k = 1, . . . , T , (Δf)T+1 = 0 − fT , and the

higher-order operators Δn+1f = Δ(Δnf). The following lemma relates the monotonicity of a

function and its autocorrelation function:

Lemma 3 Consider a nonnegative sequence f0, f1, . . . , fT , such that f0 = 0. Define the auto-

correlation function Rτ =
∑T−k

k=0 fkfk+|τ |, −T + 1 ≤ τ ≤ T − 1. Then,

1. if f is unimodal, so is R,

2. if Δnf does not switch sign, then R has at most n− 1 turning points.
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In light of Corollary 1, the result immediately leads to:

Corollary 2 In a network symmetric economy with a high public information component, the

autocorrelation function of volatility is unimodal.

Thus, given the restrictions imposed by network symmetry, nonmonotonicity of the autocor-

relation function of volatility suggests that there is asymmetry in the underlying information

network.

One way of measuring the degree of monotonicity of an autocorrelation function is by count-

ing its number of turning points for positive τ (since the autocorrelation function is symmetric, it

is sufficient to study τ > 0). Another way is to measure its absolute variation,
∑

τ>0 |Rτ+1−Rτ |,
which will be higher the more nonmonotone the autocorrelation function.

To summarize, network symmetry leads to hump-shaped volatility after an information

shock, and also to hump-shaped autocorrelation functions, whereas any dynamics can arise

in a preference symmetric economy.

5.2 Volume

Just like with volatility, rich dynamics of trading volume can arise within the network model.

Since the model is inherently asymmetric, aggregate trading volume will be made by the hetero-

geneous trades of many different agents. This contrasts to the uniform behavior in models with

a representative informed agent (e.g., Kyle 1985), as well as to the ex ante symmetric behavior

in economies with symmetric information structures (e.g., Vives 1995; He and Wang 1995).

We focus on the aggregate period-by-period trading volume of agents in the network, since

the stochastic supply is (quite trivially) normally distributed. To this end, we define:

Definition 5 The time-t aggregate (realized) trading volume is Wt =
1
N

∑
a |Δxa,t|, and the (ex

ante) expected trading volume is Xt = E [Wt].

The following theorem characterizes the expected trading volume, and mirrors our volatility

results by showing that any pattern of expected trading volume can be supported in the model.

Theorem 6 The time-t expected trading volume is

Xt =
τ

N

N∑
a=1

1

γa

√√√√ 2

π

(
V 2
a,t−1

τv + Yt−1
−

V 2
a,t

τv + Yt
+

ΔV 2
a,t

τv + Yt
+

ΔVa,t

τ

)
. (20)
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Given positive coefficients, c1, c2, . . . , cT+1, and any ε > 0, there is an economy such that

|Xt − ct| ≤ ε, t = 1, . . . , T + 1.

It is clear from (20) that, as is the case for volatility, heterogeneous preferences alone cannot

generate such complete generality of trading volume dynamics. In a network symmetric economy,

all terms under the square root are identical across agents, and (20) collapses to

Xt =

√
2τ2

πγ̄2

(
V 2
t−1

τv + Yt−1
− V 2

t

τv + Yt
+

ΔV 2
t

τv + Yt
+

ΔVt

τ

)
. (21)

Again, differences in preferences in this case are only important through the effect they have on

the (harmonic) average risk aversion coefficient, γ̄. Moreover, the restrictions on ΔVt imposed by

network symmetry carry over to trading volume. It is easily seen that if the public information

component is large compared with the diffusion component, the fourth term under the square

root in (21) dominates and Xt ≈
√

2τ2

πγ̄2ΔVt. In this case, we therefore get:

Corollary 3 In a network symmetric economy, in which the public information component is

high:

• Xt is unimodal, as is its autocorrelation function,

• There is an approximate square root relationship between σp,t and Xt:

Xt ∼
√
σp,t. (22)

To summarize, the degree of nonmonotonicity of the autocorrelation functions of volatility

and trading volume are related to the degree of asymmetry in the information diffusion process.

In the network symmetric case, after an information shock trading volume and price volatility

increase, reach a peak and then decrease. In the asymmetric case, the dynamics of volume and

volatility after an information shock may be nonmonotone. Also, the instantaneous correlation

of volatility and volume is high in the symmetric case.

In the completely general case, with heterogeneity over both preferences (γa) and network

structure (Va,t), we expect the interplay between the two to give rise to quite arbitrary trading

volume and volatility dynamics. For example, at a large time, t, almost all information may

have diffused among the bulk of agents, leading to a small and decreasing ΔVa,t, and thereby low

volatility. A peripheral agent with very low risk aversion, who receives many signals very late,

may still generate large trading volume at such a late point in time, despite the low volatility.

The above example captures the important distinction between trading volume driven by

high aggregate information diffusion, and by demand from agents with low risk aversion, a
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distinction that does not arise in either the preference symmetric or the network symmetric

benchmark cases.

5.3 Conditioning on event time

In the previous analysis we studied unconditional relations, assuming that the arrival time of

information shocks is unknown. In some cases the arrival time may be observable. Earnings

announcements may, for example, constitute well defined information events for which we could

use such conditioning. Although the actual announcement is a public event, if agents have

additional private information, the inferences they draw from the announcement together with

their private information may differ.

If the time of arrival of the information shock is well-identified, we can condition on the

time that has passed since arrival and calculate conditional relations between returns and vol-

ume. Specifically, we can use t in our information set when calculating relations, e.g., defining

Cov(Wt,Wt+1) = E[(Wt−E[Wt])(Wt+1−E[Wt+1)]|t]. We define the price change, μt = pt−pt−1,

and we then have

Theorem 7 Trading volume and price changes satisfy the following conditional relations:

• Corr(Wt, |μt|) > 0,

• Corr(Wt,Wt−1) > 0,

• Wt is independent of μs for s < t.

The first two results state that trading volume is contemporaneously positively related to ab-

solute price changes, as well as positively autocorrelated. These results are in line with the

previously discussed empirical literature. The third result states that price movements do not

cause lagged trading volume. The result seems to be inconsistent with what is found in Gallant,

Rossi, and Tauchen (1992), but consistent with the results in Saatcioglu and Starks (1998). We

emphasize though that to test this prediction, one needs to condition on the time elapsed after

an information event, which these studies do not do. It is therefore an open question whether

the prediction holds empirically.

5.4 Size versus volatility and volume

The results in Sections 5.1 and 5.2 can potentially be used to understand variations in dynamics

across different markets and assets. One such variation is between companies of different size,

where we may expect more transparent information diffusion for large than for small compa-

nies, because of the higher coverage of large companies. The underlying information network

structure for large companies may therefore be relatively symmetric, and the public information
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component may be large. In contrast, the network structure of smaller companies may be more

asymmetric, and the nonpublic information component more significant.

We carry out initial tests of whether the observed dynamics of volatility and volume in the

market is consistent with such differences between large and small companies. The tests are

suggestive and exploratory. A more extensive empirical investigation, e.g., in the form of reverse

engineering the underlying network using maximum likelihood estimation, is outside of the scope

of this paper.

5.4.1 Data

Using the Center for Research in Security Prices (CRSP), we collect daily returns, market value,

and trading volume over a ten-year period (January 2003-December 2012), for all companies in

the Russell 3000 Index. We classify the companies as Large Cap (market capitalization above

USD 10 Billion), Mid Cap (market capitalization between USD 1 Billion and 10 Billion), and

Small Cap (market capitalization below USD 1 Billion). We require data for at least 98% of

the days in the sample (2,466 of the 2,517 trading days) to be available, to include a company

in the sample, leaving us with 276 Large Cap, 746 Mid Cap, and 502 Small Cap companies, in

total J = 1524 companies.

We calculate weekly return volatility and turnover for each stock in the sample, which we

then use to calculate weekly autocorrelations of volatility, Rσ
j,t, and turnover, RW

j,t, for each stock

(j), and lag t = 1, 2, . . . , 12 weeks. We use turnover instead of raw volume, to get a normalized

trading volume measure.

5.4.2 Results

We calculate the average number of turning points of the autocorrelation functions for volatility

and turnover, in the three groups. The results are shown in Table 2. We see that the number of

turning points is larger for smaller firms, both for autocorrelation of volatility and of turnover.

The differences are statistically significant at the 2.5% level (t-statistic of 2.02, using a one-sided

test) when testing for differences of means between Mid Cap and Small Cap companies, whereas

it is significant at the 0.1% level for the other three tests (Large Cap verses Mid Cap, and Mid

Cap versus Small Cap for volatility, and Large Cap versus Mid Cap for turnover). This is in

line with our analysis, that large companies have more symmetric information networks with a

larger public component than small companies.

A similar picture emerges for absolute variation of the autocorrelation functions of volatility

and volume, for firm j defined as

12∑
t=1

|Rσ
j,t −Rσ

j,t−1| and

12∑
t=1

|RW
j,t −RW

j,t−1|,

respectively. As seen in Table 2, the average absolute variation is higher for smaller companies,

with similar statistical significance as for the number of turning points. Since absolute variation
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Large Cap Mid Cap Small Cap

A. Volatility, Rσ
j,t

Average number of turning points 3.63 4.08 4.46
(3.76) (3.81)

Average absolute variation 0.88 0.92 0.99
(2.03) (5.67)

B. Turnover, RW
j,t

Average number of turning points 3.70 4.18 4.37
(3.74) (2.02)

Average absolute variation 0.71 0.77 0.85
(3.90) (6.70)

C. Correlation 0.57 0.53 0.41
(-4.00) (-14.1)

Number of firms 276 746 502

Table 2: Company size versus dynamics of volatility and turnover. Panel A shows how the
autocorrelation function of volatility, Rσ

j,t, is related to company size. Companies are divided into three
groups: Large Cap (market capitalization above USD 10 Billion), Mid Cap (market capitalization between
USD 1 and 10 Billion), and Small Cap (market capitalization below USD 1 Billion). Average number of
turning points, and average absolute variation are shown in rows 1 and 3, respectively. The t-statistic of
a difference of means test between number of turning points of Large Cap and Mid Cap companies, and
between Mid Cap and Small Cap companies, are shown in columns 2 and 4 of row 2, respectively, and the
same difference in means tests for absolute variation in rows 2 and 4 of row 4. Panel B shows the same for
the autocorrelation function of turnover. Panel C shows the average correlation between volatility and
turnover for the three groups of companies. Columns 2 and 4 show the t-statistics of difference in means
test between Large and Mid Cap companies, and between Mid and Small Cap companies, respectively.

provides another measure of nonmonotonicity, this reinforces the view that smaller stocks are

associated with more asymmetric information networks than large stocks.

Finally, the cross correlation between volatility and turnover is higher for Large Cap com-

panies than for Small Cap companies (0.57 for Large Cap versus 0.41 for Small Cap, with

differences in means strongly statistically significant both between Large Cap and Mid Cap, and

between Mid Cap and Small Cap). We argued earlier that in a symmetric network with a large

public information component, there will be a close instantaneous link between volatility and

volume, so this result is also consistent with less asymmetric networks for large stocks.

One potential issue with the test above is that trading volume is known to be non-stationary,

increasing over time (see, e.g., Lo and Wang 2000). Although we use turnover in our test, which

did not seem to have an identifiable trend during the sample period (the average weekly turnover

was 2.8% in the first year, 2003, peaked around 10% at the height of the financial crises, 2008,

and was then down to 3.4% in the last year of the period, 2012), we wish to control for trends

in our test, for the sake of robustness. We therefore carry out the same tests as in Table 2,

but normalize volatility and turnover by dividing these variables by the average volatility and

turnover across all stocks, in any given week. Thus, the sum of normalized volatilities and

turnovers in any given week is equal to one. The results (not reported) are virtually identical

to those in Table 2, so non-stationarity does not see to be driving our results.

Another implication of the model is that in network symmetric economies with large public
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information components, expected trading volume scales as the square root of volatility (22).

In log-coordinates, we can write

wj,t = aj + bjsj,t + εj,t, (23)

where wj,t = log(Wt) is the logarithm of trading volume, and sj,t = log(σp,t) is the logarithm of

volatility, for firm j at time t, εj,t are random shocks, and the coefficient bj = 0.5 for firms with

symmetric networks and large public information components. We investigate this relation.

For each firm, we regress log-turnover on log-volatility, and we then calculate the average bj

coefficient for firms in the three different groups. The results are shown in Table 3, Panel A. We

see that the average coefficients are lower than 0.5, although quite close, for all groups. They

are about 0.43 for the Large Cap and Medium Cap groups, and 0.38 for the Small Cap group.

This suggests that the relationship between volatility and volume is farthest away from a square

root relationship for stocks in the Small Cap group, again consistent with more asymmetry in

this group. The difference in means between Mid Cap and Small Cap companies is significant,

with a t-stat of -5.67.

The regressions in (23) do not separate between aggregate shocks to volatility and vol-

ume, and company specific shocks. If shocks are mainly aggregate, a cross sectional compar-

ison between companies will allow for only limited inferences. We can see how well volatility

and turnover are related in the aggregate market, by regressing log-average turnover, w̄t =

log
(

1
J

∑
j Wt(j)

)
, on log-average volatility, s̄t = log

(
1
J

∑
j σp,t(j)

)
, i.e.,

w̄t = ā+ b̄s̄t + ε′t.

The b̄ coefficient in this regression is insignificantly different from 0.5 (see Panel C of Table 3),

suggesting that the square root relationship holds well at the market level.

To focus on excess turnover and volatility, above and beyond market shocks, we regress

wj,t − w̄t = aej + bej(sj,t − s̄t) + εej,t.

The average bej coefficients for companies in the three groups are shown in Panel B of Table 3. The

coefficients are lower for all groups compared with those in Panel A—between 0.32 and 0.35—as

are the R-squares, suggesting a significant market component that generates both volatility and

volume for individual stocks. The lowest average coefficient is again for companies in the Small

Cap group, significantly lower than the average of the Mid Cap companies (t-statistic of -2.51).

However, the average coefficient for the Large Cap companies is in this case lower than for

the Mid Cap companies. Altogether, the results are consistent with the following story: Large

companies have symmetric information networks, and the type of information that is relevant

for these companies is also closely related to aggregate market information, causing their excess

regression coefficient to be low. Mid-sized companies also have symmetric networks, but their

information is not as closely related to market information, i.e., it is more idiosyncratic. Finally,
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Large Cap Mid Cap Small Cap Market

A. Log-regression
Average b 0.43 0.43 0.38

(0.009) (0.005) (0.008)
(0.35) (-5.67)

Average R2 0.30 0.25 0.15

B. Excess log-regression
Average be 0.33 0.35 0.32

(0.011) (0.0065) (0.0096)
(1.64) (-2.51)

Average R2 0.17 0.15 0.11

C. Market regression
Market b̄ 0.51

(0.022)
R2 0.52

D. Correlations
Average ρ(s̄, sj) 0.63 0.60 0.54
Average ρ(w̄,wj) 0.60 0.54 0.41

Table 3: Relationship between log-turnover and log-volatility. Panel A shows how the regression
coefficient of log-turnover on log-volatility is related to company size. Companies are divided into three
groups: Large Cap (market capitalization above USD 10 Billion), Mid Cap (market capitalization between
USD 1 and 10 Billion), and Small Cap (market capitalization below USD 1 Billion). Average regression
coefficients are shown in row 1, and standard deviations in row 2. The t-statistic of difference of means
tests between regression coefficients of Large Cap and Mid Cap companies, and between Mid Cap and
Small Cap companies, are shown in columns 2 and 4 of row 3, respectively. The average R-squares are
shown in Row 4. Panel B shows the same for excess log-turnover (defined as wj,t − w̄t) regressed on
excess log-volatility (defined as sj,t − s̄t). Panel C shows the coefficient when mean log turnover for all
firms in the sample, w̄t, is regressed on mean log volatility, s̄t. Panel D shows the average (time series)
correlations between mean log-volatility and individual company volatility (row 1), and between mean
log-turnover and individual company log-turnover (row 2), for the three groups.

small companies have asymmetric networks, and information about these companies is even

more idiosyncratic.

The correlations between company volatility and turnover are indeed different for companies

of different sizes, as shown in Panel D of Table 3. The panel shows the average (time series)

correlation between market and individual firm log-turnover, Corr(w̄,wj), and between market

and individual firm volatility, Corr(s̄, sj), for the three groups. The average correlations are

lower for smaller than for larger companies.

Thus, altogether our tests suggest that price and volume dynamics of small stocks may be

especially well explained by information diffusion through asymmetric networks.

6 Concluding remarks

We have introduced a general network model of a financial market with decentralized information

diffusion, allowing us to study the effects of heterogeneous preferences and asymmetric diffusion

of information among investors, and the interplay between the two. At the individual investor
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level, our results show that the trading behavior of investors is closely related to their positions in

the network: Closer agents have more positively correlated trades even over short time periods,

and standard network centrality measures are closely related to agents’ profits.

At the aggregate level, the dynamics of a market’s volatility and trading volume is related

to—and could therefore be used to draw inferences about—the underlying information network.

In an initial empirical investigation, we show that the dynamics for large stocks are consistent

with symmetric information networks and large public information components, whereas the dy-

namics of smaller stocks suggest asymmetric information diffusion through nonpublic channels.

We leave to future research to shed further light on the underlying information network in the

market.

Another future line of research may be the study of endogenous network formation in financial

markets. Given the strong characterization of individual agents’ welfare, the model may be

extended to include a period before signals are received and trading occurs, during which agents

form connections in anticipation of the future value these will generate. It is an open question

what type of networks will form in equilibrium in such an extension, and how well those networks

could match observed dynamics at the individual and aggregate level.
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Proofs
Proof of Theorem 1:

We prove the result using a slightly more general formulation, where the volatility of noise trade demand is allowed to
vary over time, so instead of τu, we have τu1 , . . . , τuT . We first state three (standard) lemmas.

Lemma 4 (Projection Theorem) Assume a multivariate signal [μ̃x; μ̃y ] ∼ N([μx;μy ], [Σxx,Σxy; Σyx,Σyy]). Then the
conditional distribution is

μ̃x|μ̃y ∼ N
(
μx + ΣxyΣ

−1
yy (μ̃y − μy),Σxx − ΣxyΣ

−1
yy Σyx

)
.

Lemma 5 (Special case of projection theorem) Assume an K-dimensional multivariate signal v = [v; s] ∼ N(v̄1, σ2
v11

′+
Λ2), where Λ = diag(0, σ1, . . . , σM−1). This is to say that v ∼ N(v̄, σ2

v), si = v+ξi, where ξi ∼ N(0, σ2
i )’s are independent

of each other and of v, i = 1, . . . , K − 1. Then the conditional distribution is

v|s ∼ N

(
τv

τv + τ
v̄ +

1

τv + τ
τ ′s,

1

τv + τ

)
.

Here, τ = (τ1, . . . , τK−1)
T , τi = σ−2

i , τ =
∑M−1

i=1 τi, and τv = σ−2
v .

Lemma 6 (Expectation of exponential quadratic form) Assume x ∼ N(μ,Σ), and that B is a symmetric positive
semidefinite matrix. Then

E
[
e−

1
2
(2a′x+x′Bx)

]
=

1

|I + ΣB|1/2
e−

1
2
(μ′Σ−1μ−(Σ−1μ−a)(Σ−1+B)−1(Σ−1μ−a)).

The structure of the proof is now quite straightforward, the extension compared with previous literature being the
heterogeneous information diffusion. We first assume that agents’ demand takes a linear form at each point in time, and
calculate the market maker’s pricing function given observed aggregate demand in (3). This turns out to be linear in a way
such that the market maker’s information is completely revealed in prices. Thus, pt and wt convey the same information.
We then close the loop by verifying that given the market maker’s pricing function in each time period, each agent when
solving their backward induction problem will derive demand and utility according to (5,6), verifying that agents’ demand
functions are indeed linear.

It will be convenient to use the variables Qa,t = τVa,t. We enumerate the agents from one-dimensionally from 1 to
N̄ , so that agent 1, . . . , N represents the agents in the first replica network, agents N + 1, . . . , 2N , the agents in the second
replica network, etc. Assume that agent a’s time-t demand function is

xa,t(za,t, pt) = Aa,tza,t + ηa,t(pt).

Then the total average agent demand is

xt(v, pt) =
1

N̄

N̄∑
a=1

Aa,tza,t + ηa,t(pt) = Atv + ηt(pt),

where At = 1
N

∑N
a=1 Aa,t, and ηt = 1

N

∑N
a=1 ηa,t(pt), with the convention, A0 = 0, η0 ≡ 0. Here, we are using the fact

that in our large network limM→∞ 1
M

∑M−1
r=0 za+rM,t = v for all a and t (almost surely). The net demand at time t is

then the difference between time t and t − 1 demands,

Δxt = xt(v, pt)− xt−1(v, pt−1) = (At − At−1)v + η(pt)− η(pt−1).

Now, the market maker observes total time t demands,

wt = Δxt + ut,

and since the functions ηt and ηt−1 are known, the market maker can back out

Rt = (At − At−1)v + ut. (24)

This leads to the following pricing formula, which immediately follows from Lemma 2.

Lemma 7 Given the above assumptions, the time-t price is given by

pt =
τv

τv + τ̂ tu
v̄ +

τ̂ tu
τv + τ̂ tu

v +
1

τv + τ̂ tu

t∑
s=1

(As − As−1)τusus, (25)
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where τ̂ tu =
∑t

s=1(As −As−1)2τus , τus = σ−2
us .

Equivalently,

pt = λtRt + (1− λt(At −At−1))pt−1, (26)

where λt =
τut (At−At−1)

τv+τ̂t
u

, and p0 = v̄.

Proof of Lemma 7: At time t, the market maker has observed R1, . . . , Rt. We define the vector s = (R1/(A1 −
A0), R2/(A2−A1), . . . , Rt/(At−At−1))′, and it is clear that si ∼ N(v̄, σ2

v+σ2
ui

/(Ai−Ai−1)2). It then follows immediately
from Lemma 2 that

v|s ∼ N

(
τv

τv + τ̂ tu
v̄ +

1

τv + τ̂ tu

t∑
i=1

(Ai − Ai−1)
2τui

Ri

Ai −Ai−1
,

1

τv + τ̂ tu

)
,

i.e.,

v = Vt + σVt ξ
V
t , (27)

where Vt = τv
τv+τ̂t

u
v̄ + 1

τv+τ̂t
u

∑t
i=1(Ai −Ai−1)τuiRi, σ2

Vt
= 1

τVt
, where τVt = τv + τ̂ tu.

So, pt = Vt = E[v|s] takes the given form in the first expression of the lemma. A standard induction argument,
assuming that the second expression is valid up until t− 1, shows that the expression then is also valid for t.

Note that (27) is the posterior distribution of v given the information R1, . . . , Rt, so v ∼ N(Vt, σ2
Vt

). We have shown

Lemma 7.

Thus, linear demand functions by agents imply linear pricing functions in the market, showing the first part of the
proof. We next move to the demand functions and expected utilities of agent a, given the pricing function of the market
maker. We have (using lemma 1 for the posterior distribution) at time t, the distribution of value given {za,t, pt} is

v|{za,t, pt} ∼ N

(
τVt

τVt + τa,t
Vt +

τa,t

τVt + τa,t
za,t,

1

τVt + τa,t

)
.

The time-T demand of an agent can now be calculated. Since individual agents condition on prices, they also observe Ř,
and agent a’s information set is therefore {za, Ř}, which via Lemma 1 (with Λ = diag(0, σ2

i , σ
2
u/Ā

2)) leads to

v|{za, Ř} ∼ N

⎛
⎜⎜⎜⎜⎝

τv

τv + τa + τ̂u
v̄ +

τa

τv + τa + τ̂u
za +

τ̂u

τv + τa + τ̂u
Ř︸ ︷︷ ︸

μa

,
1

τv + τa + τ̂u︸ ︷︷ ︸
σ̂2
a

⎞
⎟⎟⎟⎟⎠ .

At time T , given the behavior of the market maker, the asset’s value, given agent a’s information set is therefore
conditionally normally distributed so given agent a’s CARA utility, the demand for the asset (2) takes the form:

xa,T (za, p) =
E[v|Ia,T ]− pT

γaσ2[v|Ia,T ]
, a = 1, . . . , N̄ . (28)

The demand of agent a is therefore

xa,T (za,T , pT ) =
μa − pT

γaσ̂2
a

=
1

γa

(
τv v̄ + τaza + τ̂uŘ− (τv + τa + τ̂u)p

)
=

1

γa

(
τv v̄ + τaza + τ̂uŘ−

(
1 +

τa

τv + τ̂u

)
(τv v̄ + τ̂uŘ)

)

=
1

γa
(τaza − τap)

=
τa,T

γa

(
za,T − pT

)
.

It follows that AT = 1
N

∑N
a=1

Na,T

σ2γa
.
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Since v − pT ∼ N(0, σ2
Vt

), and za,T − pT = ζa,T + (v − pT ), where ζa,T is independent of v − pT , it follows that

ζa,T |(za,T − pT ) ∼ N(
τVT

τVT
+τa,T

(za,T − pT ), 1
τVT

+τa,T
). The expected utility of the agent at time T (with time-T wealth

of zero), given za,T − pT , is then

Ua,T = −E
[
e−γaxa,T (v−pT )

∣∣∣za,T − pT

]
= −E

[
e−τa,T (za,T −pT )(za,T−pT −ζa,T )

∣∣∣za,T − pT

]
= −e−τa,T (za,T−pT )2E

[
e−τa,T (za,T −pT )(−ζa,T )

∣∣∣za,T − pT

]
= −e−τa,T (za,T−pT )2e

τa,T (za,T−pT )
τVT

τVT
+τa,T

(za,T −pT )− 1
2
τ2
a,T (za,T−pT )2 1

τVT
+τa,T

= −e
− τa,T

τVt
+τa,T

(za,T −pT )2((τVt
+τa,T −τVt

)− 1
2
τa,T )

= −e
− 1

2

τ2
a,T

τVt
+τa,T

(za,T −pT )2

.

This shows the result at T .

It is easy to check that the unconditional expected utility is −E0[e
−γaxa,T (v−pT )] = −

√
τVT

τVT
+τa,T

, using lemma 3.

We define Yt = τ̂ tu =
∑t

i=1 yi, where yi = (Ai − Ai−1)
2τui , and recall that Qa,t = τa,t =

Va,t

σ2 =
∑t

i=1 qa,i, where

qa,i =
Va,i−Va,i−1

σ2 =
ΔVa,i

σ2 . With this notation we have

Ua,T = −e
− 1

2

Q2
a,T

τv+YT +QT
(za,t−pt)

2

,

xa,T =
Qa,T

γa
(za,T − pT ),

and −E0[e
−γaxa,T (v−pT )] = −

√
τv+YT

τv+YT +τVa,T
= − 1√

Ca,T
= −Da,T .

We proceed with an induction argument: We show that given that (5,6) is satisfied at time t, then it is satisfied at
time t− 1. As already shown, pt−1, and za,t−1 sufficiently summarizes agent a’s information at time t− 1 (given the linear
pricing function). From the law of motion, Wa,t = Wa,t−1+xa,t−1(pt−pt−1), an agent’s optimization at time t−1 is then

Ua,t = argmax
xa,t−1

−Ea,t−1

[
e−γaWa,t−1−γaxa,t−1(pt−pt−1)Da,te

− 1
2

Q2
t

τv+Yt+Qt
(za,t−pt)

2 ∣∣∣za,t−1, pt−1

]

= argmax
xa,t−1

−Da,te
−γaWa,t−1Ea,t−1

[
e
−γaxa,t−1(pt−pt−1)− 1

2

Q2
t

τv+Yt+Qt
(za,t−pt)

2 ∣∣∣za,t−1, pt−1

]

def
= argmax

b
−Da,te

−γaWa,t−1Ea,t−1

[
e
−b(pt−pt−1)− 1

2

Q2
t

τv+Yt+Qt
(za,t−pt)

2 ∣∣∣za,t−1, pt−1

]
. (29)

Thus, we need to calculate the distributions of pt − pt−1 and za,t − pt given za,t−1 and pt−1. From the signal structure,
we have the following relationship

za,t−1 = v + ξt−1, ξt−1 ∼ N

(
0,

1

Qt−1

)
, (30)

za,t = v + ξt = v +
Qt−1

Qt
ξt−1 +

qt

Qt
et, et ∼ N

(
0,

1

qt

)
, (31)

where et and ξt−1 jointly independent and independent of all other variables. In the new notation, from (4), we have

pt =
τv

τv + Yt
v̄ +

Yt

τv + Yt
v +

1

τv + Yt

t∑
s=1

(As − As−1)τusus, (32)

pt−1 =
τv

τv + Yt−1
v̄ +

Yt−1

τv + Yt−1︸ ︷︷ ︸
A4

v +
1

τv + Yt−1

t−1∑
s=1

(As − As−1)τusus, (33)
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so

pt − pt−1 =

(
τv

τv + Yt
− τv

τv + Yt−1

)
v̄ +

(
Yt

τv + Yt
− Yt−1

τv + Yt−1

)
︸ ︷︷ ︸

A1

v +
1

τv + Yt
(At −At−1)τut︸ ︷︷ ︸√

ytτut

ut

+

(
1

τv + Yt
− 1

τv + Yt−1

)
︸ ︷︷ ︸

B1

t−1∑
s=1

(As − As−1)τusus, (34)

and also

za,t − pt =
Qt−1

Qt
ξt−1 +

qt

Qt
et −

τv

τv + Yt
v̄ +

τv

τv + Yt︸ ︷︷ ︸
A2

v

− 1

τv + Yt
(At −At−1)τut︸ ︷︷ ︸√

ytτut

ut −
1

τv + Yt

t−1∑
s=1

(As − As−1)τusus. (35)

This leads to the unconditional distribution:

⎡
⎢⎣ pt − pt−1

st − pt
st−1
pt−1

⎤
⎥⎦ ∼ N

⎛
⎜⎝
⎡
⎢⎣ 0

0
v̄
v̄

⎤
⎥⎦ ,

⎡
⎢⎣

ΣXX ΣXY

Σ′
XY ΣY Y

⎤
⎥⎦
⎞
⎟⎠ , (36)

Here,

ΣXX =

⎡
⎣ A2

1
τv

+ yt
(τv+Yt)2

+B2
1Yt−1

A1A2
τv

− yt
(τv+Yt)2

− B1Yt−1

τv+Yt

A1A2
τv

− yt
(τv+Yt)2

− B1Yt−1

τv+Yt

1
Qt

+
A2

2
τv

+ yt
(τv+Yt)2

+
Yt−1

(τv+Yt)2

⎤
⎦

=

[ yt
(τv+Yt)(τv+Yt−1)

0

0 1
Qt

+ 1
τv+Yt

]
,

ΣY Y =

⎡
⎣ 1

τv
+ 1

Qt−1

A4
τv

A4
τv

A2
4

τv
+

Yt−1

(τv+Yt−1)
2

⎤
⎦

=

⎡
⎣ 1

τv
+ 1

Qt−1

Yt−1

τv(τv+Yt−1)
Yt−1

τv(τv+Yt−1)

Yt−1

τv(τv+Yt−1)

⎤
⎦ ,

ΣXY =

[ A1
τv

A4A1
τv

+ B1
τv+Yt−1

Yt−1

1
Qt

+ A2
τv

A2A4
τv

− 1
τv+Yt−1

1
τv+Yt

Yt−1

]

=

[ yt
(τv+Yt)(τv+Yt−1)

0
1
Qt

+ 1
τv+Yt

0

]
.

We use the projection theorem to write [pt − pt−1; za,t − pt] ∼ N(μ, Σ̂), where μ = ΣXY Σ−1
Y Y [za,t−1 − v̄; pt−1 − v̄], and

Σ̂ = ΣXX − ΣXY Σ−1
Y Y Σ′

XY . It follows that

μ =

⎡
⎣ Qt−1yt

(τv+Yt)(τv+Qt−1+Yt−1)
Qt−1(τv+Yt−1)(τv+Qt+Yt)

Qt(τv+Qt−1+Yt−1)(τv+Yt)

⎤
⎦ (za,t−1 − pt−1).
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We rewrite (29) as

Ua,t = argmax
q

−Da,te
−γaWa,t−1E

[
e−ax1− 1

2
x′Bx

]
,

where x = [pt − pt−1; zt − pt], B =

[
0, 0; 0,

Q2
t

τv+Yt+Qt

]
, a = [q; 0], and q = γaxa,t−1. From Lemma 3, it follows directly

that this maximization problem is equivalent to

Ua,t = argmax
q

−Da,te−γaWa,t−1

|I + Σ̂B|1/2
e−

1
2
(μ′Σ̂−1μ−(Σ̂−1μ−a)Z(Σ̂−1μ−a)),

where Z = (Σ̂−1 +B)−1. Clearly, the optimal solution is given by

argmax
q

q(ZΣ̂−1μ)1 − 1

2
Z11q

2,

leading to q∗ =
(ZΣ̂−1μ)1

Z11
. It is easy to verify that Σ̂−1μ =

QtQt−1

Qt−Qt−1
[1; 1](za,t−1 − pt−1), and some further algebraic

manipulations shows that indeed q∗ = Qt−1(za,t−1 − pt−1), leading to the stated demand function at t− 1, (5).
Given the form of q, it then follows that

μ′Σ̂−1μ− (Σ̂−1μ− a)Z(Σ̂−1μ− a) =
Q2

t−1

τv +Qt−1 ++Yt−1
(za,t−1 − pt−1)

2, (37)

leading to the form of the utility stated in the theorem (6), with Ca,t−1 = |I + Σ̂B|1/2. It is easy to check that Ca,t−1

takes the prescribed form, as does then Da,t−1 = C
−1/2
a,t−1Da,t.

Thus, given a linear pricing function, agents’ demand take a linear form and, moreover, the coefficients take the
functional forms shown in the Theorem, as do agents’ expected utility. We are done.

Proof of Theorem 2: The proof follows immediately from (5), (30-31), and (35).

Proof of Theorem 3: The certainty equivalent satisfies−e−γaCE = E0[−e−WT+1 ] = −E0

[∏T
t=2 C

−1
t−1e

− 1
2

Q2
1

τv+Q1+Y1
(za,1−p1)

2

]
.

It is easy to see that

T∏
t=2

C−1
t−1 =

(
τv +QT + YT

τv +Q1 + Y1
)

)(
τv + Y1

τv + YT

) T∏
t=2

(
1 +

Qt−1(Yt − Yt−1)

(τv + Yt−1)(τv + Yt)

)
.

Moreover, since at t = 0, za,1 − p1 ∼ N(0, 1
Q1

+ 1
τv+Y1

), it follows that

E0

[
e
− 1

2

Q2
1

τv+Q1+Y1
(za,1−p1)

2
]
=

τv +Q1 + Y1

τv + Y1
,

and the result for the ex ante certainty equivalent follows.
The ex ante expected profits between t and t + 1 are E0[(za,t − pt)(pt+1 − pt)]. Plugging in the form (34,35) yields

the result. Using a similar approach for expected profits, we get that the expected total, time T trading profit of agent a’s
trade in time t is

1

γa

Qa,t

τv + Yt
,

36



and the total expected trading profit over time therefore is

1

γa

T∑
t=1

Qa,t

τv + Yt
, (38)

We are done.

Proof of Theorem 4:
Proof of Theorem 4 : We focus on the Erdös-Renyi random graph G(N, pN ) model, where

pN = c logk(N)/(N − 1), c > 0, k > 3, (39)

qN = p(N − 1) = c logk(N). (40)

Throughout the proof we will often suppress the dependence of variables on N , e.g., writing p and q instead of pN and
qN . Also, ε denotes a constant arbitrarily close to zero, and C, c, c1, etc. denote strictly positive (possibly large) constants.

The proof is based on the fact that for arbitrary constants, α > 0, β > 0, it follows that qα << Nβ , for large N . We
shall see that the variables of interest can be given as well-behaved functions of q−α with error terms of order N−β , which
then leads to tight bounds on the expected correlations.

We first introduce some convenient notation. For a sequence of random variables wN , we write w = Os(f(N)), where
it is assumed that limN→∞ f(N) = 0, if for large N

P(|w| ≥ Cf(N)) ≤ Cf(N)

for some constant, C > 0. If wN − r = Os(f(N)), for some function (or constant) r, we also write wN = r + Os(f(N)).
We will also use standard O() (Big-O) and o() (little-o) notation. Finally, aN ∼ bN means that 0 < c ≤ aN/bN ≤ C < ∞
for large N (i.e., that aN = Θ(bN )).

We use the notation V ar(x), Cov(x, y), and Corr(x, y) for the population variance, covariance and correlation, respec-
tively, of random variables x and y, whereas we use V [X], C[X,Y ], and ρ[X, Y ] for the sample (cross sectional) variance,
covariance and correlation of vectors of realization of random variables, X and Y .

We are interested in the expectations of the cross sectional correlations

ρD
def
= ρ[DN ,ΠN ],

ρF
def
= ρ[−F,ΠN ],

ρ
Ĉ

def
= ρ[Ĉ,ΠN ],

ρK
def
= ρ[Kα,ΠN ].

We begin with deriving properties of yt and ζt = βt/β1. To do this, we start with the following Lemma that shows the
distributional properties of Va,t for large N .

Lemma 8 Consider constants K > 14 (arbitrarily large), and ε > 0 (arbitrarily close to zero), and an integer T > 1
(arbitrarily large). Then there is an N0, such that for all N > N0, for all a = 1, . . . , N , for all t = 1, . . . , T ,

P
(∣∣Va,t − Va,t−1 − qt

∣∣ ≥ εqt
)
≤ N−K . (41)

Proof : We apply Lemma 10.7 in Bollobas (2001). Given that αt = (K − 2)
√

log(N)/(c logk(N))t), βt = (c logk(N))t/N ,

and γt = 2(c logk(N))t−1/N , it follows that α1 ≤ C log(N)
1−k
2 , and

t∑
i=1

αi + βi + γi = α1(1 + o(1)),

where αi, βi and γi are defined in Lemma 10.6 of Bollobas (2001). Lemma 10.7 in Bollobas (2001) now implies that,

P
(∣∣Va,t − Va,t−1 − qt

∣∣ ≥ δtq
t
)
≤ N−K , (42)
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where

δt ≤ C′ log(N)
1−k
2 , t = 1, . . . , T, (43)

and since δt → 0 when N → ∞, the result follows.

Bounds on yt:
We recall that Va,t is the number of nodes within a distance of t from node a, and derive asymptotic properties of the

averages

V̄t
def
=

1

N

N∑
a=1

Va,t, t = 1, . . . , T. (44)

We note that At = τ
γ
V̄t, so all asymptotic results we derive for V̄t will, up to a constant, also hold for At, and thereby be

important for yt. We have

yt = α(V̄t − V̄t−1)
2,

where we define V̄0 = 0, and α = τuτ2

γ
(the risk aversion coefficient being constant since we assume a preference symmetric

economy). Lemma (8) immediately implies that

P
(∣∣V̄t − V̄t−1 − qt

∣∣ ≥ εqt
)
≤ N−K ,

for any ε > 0, for large N , and therefore

∣∣V̄t − V̄t−1 − qt
∣∣ ≤ εqt ⇒

∣∣yt − αq2t
∣∣

= α
∣∣V̄t − V̄t−1 − qt

∣∣× ∣∣V̄t − V̄t−1 + qt
∣∣

≤ αεqt × (1 + ε)qt

= ε′q2t.

Since ε′ is also arbitrarily close to zero, we get:

P
(∣∣yt − αq2t

∣∣ ≥ εq2t
)
≤ N−K . (45)

Bounds on ζt:
We can write the expected profit of agent a as

Πa = β1

(
Va,1 +

T∑
t=2

ζtVa,t

)
,

where β1 = (τv + y1)−1 and

ζt =
τv + y1

τv +
∑t

k=1 yk
.

The coefficients, ζt (which do not depend on a) represent the relative value for agents of having many links at distance t.
The bound on yt (45) now immediately imply that

P

(∣∣∣ζt × q2(t−1) − 1
∣∣∣ ≥ ε

)
≤ N−K . (46)

for any ε > 0, K > 14, for large enough N .
Asymptotic behavior of E[ρD], and E[ρK ]:

First, we restrict ΩN to only contain events for which ζtq2(t−1) ∈ [1 − ε, 1 + ε], t = 1, . . . , T , for some fixed ε << 1.
From (46) we know that this set of events satisfies

P(ΩN ) ≥ 1−O(q−K) (47)

for arbitrarily large K.
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We have

ρ[DN ,ΠN ] = ρ[V N
a,1, β1(V

N
a,1 + ζ2V

N
a,2 + ζ3V

N
a,3 + · · ·+ ζTNV N

a,T )]

=
S2
1 + ζ2C[Va,1, Va,2] + · · ·+ ζTC[Va,1, Va,2]

S1

√
V [Va,1 + ζ2Va,2 + · · ·+ ζT Va,T ]

=
S2
1 +

∑T
i=2 ζiSi,1

S1

√
S2
1 +

∑T
i=2 ζ

2
i S

2
i +

∑T
i=1,j>i 2ζiζjSj,i

, (48)

where we have defined ζ1 = 1, and

S2
t = V [Va,t], t = 1, 2, . . . T, (49)

St,s = C[Va,t, Va,s], s, t = 1, 2, . . . , T. (50)

We define at = ζiq2(t−1), t = 2, . . . , T , where the coefficients ai can be chosen arbitrarily close to 1 by letting N be
sufficiently large and focusing on events in Ω defined in (47), we have good control over the behavior of ζt. We also need
to control S2

t , and St,s, t > s.
The following Lemma is helpful

Lemma 9 Given the definitions (49), (50), we have

S2
t =

t∑
i=1

Z2
i + 2

t∑
i=1

t∑
j=i+1

qj−iZi + Os(N
−1/3+ε), 1 ≤ t ≤ T, (51)

St,s = S2
s +

s∑
i=1

t∑
j=s+1

qj−iZi + Os(N
−1/3+ε), 1 ≤ s, t ≤ T. (52)

Here,

Z2
t = qt

t−1∑
i=0

qi,

= q2t−1
t−1∑
i=0

q−i, t = 1, . . . , T,

Proof of Lemma 9:
For large N , the distributions of Va,t for small t will resemble those of a branching process, the difference being that

branching processes do not choose from the same nodes when going from t to t + 1. For large N , the difference will be

small. We therefore begin with studying the branching process defined as Za,1 = ξa,0, Za,t+1 =
∑Va,t

i=1 ξa,t,i, a = 1, . . . , N ,
t = 1, . . . , T − 1. Here, ξa,t,i ∼ Bin(N − 1, p), and are independent across a, t, and i. Using iterated expectations, and the
law of total variance, it is straightforward to show the following (unconditional) moment formulas

E[Za,t] = E[ξ]t,

V ar[Za,t] = E[ξ]tV ar(ξ) + E[ξ]2V ar[Za,t−1],

Cov[Za,t, Za,s] = E[ξ]t−sV ar(Za,s), t > s.

In the specific case where E[ξ] = q, and V ar(ξ) = q + O(N−1)—i.e., our case—a recursive argument shows that

E[Za,t] = qt,

V ar[Za,t] = qt
t−1∑
i=0

qi +O(N−1+ε), (53)

Cov[Za,t, Za,s] = qt
s−1∑
i=0

qi + O(N−1+ε), t > s. (54)
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We next show that the moments for Va,t+1 − Va,t are similar to the moments of Za,t+1. Of course, Va,1 has identical
moments as Za,1. For Va,2, we have, given that node a has Va,1 links, the probability that node b which is not a neighbor

of a is not a neighbor to one of a’s neighbors is (1− p)Va,1 . Therefore, the conditional distribution of the number of nodes
at distance 2 from a, given Va,1 is

Va,2 − Va,1 ∼ Bin(N − Va,1, 1− (1 − p)Va,1 ),

leading to

E[Va,2 − Va,1|Va,1] = (N − Va,1)(1− (1− p)Va,1 )

= −N(1− Va,1/N)

⎛
⎝Va,1∑

i=1

(Va,1

i

)
(−1)ipi

⎞
⎠

= −N(1− Va,1/N)

⎛
⎝Va,1∑

i=1

(Va,1

i

)( −q

N − 1

)i
⎞
⎠ , (55)

and

V ar[Va,2 − Va,1|Va,1] = (N − Va,1)(1 − (1 − p)Va,1 )(1 − p)Va,1

= −N(1− Va,1/N)(1 − p)Va,1

⎛
⎝Va,1∑

i=1

(Va,1

i

)
(−1)ipi

⎞
⎠

= −N(1− Va,1/N)(1 − p)Va,1

⎛
⎝Va,1∑

i=1

(Va,1

i

)( −q

N − 1

)i
⎞
⎠ . (56)

The law of total variance now implies that

V ar[Va,2 − Va,1] = E[V ar[Va,2 − Va,1|Va,1]] + V ar[E[Va,2 − Va,1|Va,1]], (57)

and since (as is easily shown) E[V i
a,t/(N−1)] = O(N−1+ε) for any fixed i and t, and furthermore, E

[∑∞
i=2 V

i
a,t/(N − 1)i

]
=

O(N−1), (55,56) immediately imply, when plugged into (57), that

V ar[Va,2 − Va,1] = q2 + q3 +O(N−1+ε) = V ar[Za,1] +O(N−1+ε).

The same argument for

Va,3 − Va,2 ∼ Bin(N − (Va,2 − Va,1), 1− (1− p)Va,2−Va,1 ),

leads to

V ar[Va,3 − Va,2] = q3 + q2(q2 + q3) +O(N−1+ε) = V ar[Za,2] +O(N−1+ε),

and for higher orders to

V ar[Va,t − Va,t−1] = V ar[Za,t] + O(N−1+ε). (58)

A similar argument for the covariances leads to,

Cov[Va,t − Va,t−1, Va,s − Va,s−1] = Cov[Za,t, Za,s] +O(N−1+ε), t > s. (59)

Now, since Va,t = Va,1 + (Va,2 − Va,1) + . . .+ (Va,t − Va,t−1), from (58,59) it immediately follows that

V ar[Va,t] =
t∑

i=1

Z2
i + 2

t∑
i=1

t∑
j=i+1

qj−iZi +Os(N
−1+ε), and (60)
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Cov[Va,t, Va,s] = V ar[Va,s] +
s∑

i=1

t∑
j=s+1

qj−iZi +Os(N
−1+ε), t > s. (61)

We next show that covariances of Va,t and Vb,t when a �= b (i.e., across agents) is low. First, V m
a,1 − 1, is of course

binomially distributed,
Va,1 − 1 ∼ Bin(N, p).

We recall that the moment generating function of a binomial distribution is M(t) = (1− p+ pet)n, and it therefore follows
that for any fixed m,

μm
def
= E[V m

a,1] = M (m)(0) = qm(1 + O(q−1)),

V ar[V m
a,1] = M (2m)(0)− (M (m)(0))2 = q2m−1(1 + O(q−1)).

The covariance between V m
a,1 and V n

b,1, a �= b is on the form

Cov(V m
a,1, V

n
b,1) = E[(wa + I)m(wb + I)n]− E[(wa + I)m]E[(wb + I)n],

where I is Bernoulli distributed, I ∼ Ber(p), representing the possible common link between a and b, wa ∼ Bin(N − 1, p),
wb ∼ Bin(N − 1, p) represent all the other links, and I, wa, and wb are independent.

Moreover, since the Bernoulli distribution is idempotent, Ik = I, k ≥ 1, it follows that

Cov(V m
a,1, V

n
b,1) = E[(wa + I)m(wb + I)n]−E[(wa + I)m]E[(wb + I)n]

= E

⎡
⎣(wm

a +

m−1∑
i=0

(m
i

)
wi

aI

)⎛⎝wn
b +

n−1∑
j=0

(n
j

)
wj

bI

⎞
⎠
⎤
⎦

− E

[
wm

a +

m−1∑
i=0

(m
i

)
wi

aI

]
E

⎡
⎣wn

b +

n−1∑
j=0

(n
j

)
wj

bI

⎤
⎦

= E

⎡
⎣(m−1∑

i=0

(m
i

)
wi

aI

)⎛⎝n−1∑
j=0

(n
j

)
wj

bI

⎞
⎠
⎤
⎦−E

[
m−1∑
i=0

(m
i

)
wi

aI

]
E

⎡
⎣n−1∑

j=0

(n
j

)
wj

bI

⎤
⎦

=

(
m−1∑
i=0

(m
i

)
μi

)⎛⎝n−1∑
j=0

(n
j

)
μj

⎞
⎠E[I]−

(
m−1∑
i=0

(m
i

)
μi

)⎛⎝n−1∑
j=0

(n
j

)
μj

⎞
⎠E[I]2

=

(
m−1∑
i=0

(m
i

)
μi

)⎛⎝n−1∑
j=0

(n
j

)
μj

⎞
⎠V ar(I)

= O(qm+n−2p(1− p))

= O(N−1+ε).

Together with the bounds on V ar(V m
a,1), this then implies that

Corr(V m
a,1, V

n
b,1) =

Cov(V m
a,1, V

n
b,1)√

V ar(Va,1)mV ar(Vb,1)n

=
O(N−1+ε)√

q2m−1q2n−1(1 + O(q−1))

= O(N−1+ε).

An identical argument as that above shows that

Cov((Va,1 − Vb,1)
m, (Vc,1 − Vd,1)

n) = O(qm+n−2N−1+ε) = O(N−1+ε),

when a, b, c and d are different, and that

Corr((Va,1 − Vb,1)
m, (Vc,1 − Vd,1)

n) = O(N−1+ε),
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and similarly for general T ≥ t ≥ s ≥ 1, n ≥ 1, m ≥ 1

Cov(V m
a,t, V

n
b,s) = O(N−1+ε), (62)

Corr(V m
a,t, V

n
b,s) = O(N−1+ε), (63)

Cov((Va,t − Vb,t)
m, (Vc,s − Vd,s)

n) = O(N−1+ε), (64)

Corr((Va,t − Vb,t)
m, (Vc,s − Vd,s)

n) = O(N−1+ε). (65)

To go from these bounds on population variances and covariances to bounds on sample variances and covariances, we
use the following lemmas:

Lemma 10 Assume x1, . . . , xN are identically distributed (but not necessarily independent) random variables, with mean
μ and (finite) variance σ2. Also, assume that Corr(xi, xj) ≤ CN−α, α > 0. Then the sample mean

x̄N
def
=

1

N

N∑
i=1

xi

satisfies

x̄N = μ+ Os(max(σ, 1)N−β/3),

where β = min(α, 1). Here, μ and σ are allowed to depend on N . Moreover, if σ is independent of N , the formula reduces
to

x̄N = μ+ Os(N
−β/3).

Proof of Lemma 10: It is clear that V ar(x̄N ) = σ2

N2 (N +
∑

i,j �=i Corr(xi, xj)) ≤ C2σ2N−β . Chebyshev’s inequality then

immediately implies that

P(|x̄N − μ| ≥ CσN−β/2K) ≤ K−2,

and by choosing K = Nβ/6 the result follows.

Lemma 11 If
x̄N = μ+ Os(N

−α+ε)

for all ε > 0, then, for any fixed m > 1, such that μm−1 = o(Nε) for all ε > 0,

x̄m
N = μm + Os(N

−α+ε).

Proof of Lemma 11: The proof is by induction. Assume that the result has been proved for all m = 1, 2, . . . ,M , i.e.,

P(|x̄m
N − μm| ≥ CmN−α+ε) ≤ CmN−α+ε, m = 1, 2, . . . ,M.

We expand

|x̄M+1
N − μM+1| = |x̄N − μ|

∣∣∣∣∣
M∑
i=0

aiμ
ix̄M−i

N

∣∣∣∣∣ ,
for some constants ai, i = 1, . . . ,M . Now, clearly under our induction assumption,

P(|x̄m
N | ≥ 2μm) ≤ N−α+ε, m = 1, . . . ,M

for large enough N . Therefore,

P

(∣∣∣∣∣
M∑
i=0

aiμ
ix̄M−i

N

∣∣∣∣∣ ≥ C′μM

)
≤ C′N−α+ε,

for some C′ > 0. Moreover,
P(|x̄N − μ| ≥ C1N

−α+ε) ≤ C1N
−α.

and since if
∣∣∣∑M

i=0 aiμ
ix̄M−i

N

∣∣∣ ≤ C′μM and |x̄N − μ| ≤ C1N−α, then

|x̄M+1
N − μM+1| = |x̄N − μ|

∣∣∣∣∣
M∑
i=0

aiμ
ix̄M−i

N

∣∣∣∣∣ ≤ C1N
−α+εC′μM ≤ C′′N−α+2ε.
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Finally,

P

(∣∣∣∣∣
M∑
i=0

aiμ
ix̄M−i

N

∣∣∣∣∣ ≤ C′μM ∩ |x̄N − μ| ≤ C1N
−α

)
≥ 1−

(
C1 + C′)N−α = 1− C′′′N−α.

Setting CM+1 = max(C′′, C′′′), and recalling that ε > 0 was arbitrary, the lemma follows.

Lemma 12 Assume x1, . . . , xN are identically distributed (but not necessarily independent) random variables, with mean
μ, variance σ2, and finite fourth moments. Assume that |Corr(xi, xj)| ≤ CN−α and that |Corr((xi −xj)2, (xk −xn)2)| ≤
CN−α, where α > 0, and i, j, k, n are different indexes. Then the sample variance

s2N
def
=

1

N − 1

N∑
i=1

(xi − x̄N )2

satisfies

s2N = σ2 +Os(N
−2β/3),

where β = min(α, 1).

Proof of Lemma 12: We rewrite

s2N
def
=

1

N(N − 1)

∑
i,j

1

2
(xi − xj)

2.

We have
E[(xi − xj)

2] = E[((xi − μ) − (xj − μ))2] = V ar(xi) + V ar(xj)− 2Cov(xi, xj),

implying that

E[s2N ] = σ2 − Cov(xi, xj) = σ2(1− r)
def
= σ̄2, r = O(N−α),

in turn leading to

V ar(s2N ) =

(
1

N(N − 1)

)2

E

⎡
⎣
⎛
⎝∑

i,j

(
1

2
(xi − xj)

2 − σ̄2

)⎞⎠2⎤⎦ .

We expand the square, and separate

• N(N − 1) terms on the form: (
1

N(N − 1)

)2

E

[(
1

2
(xi − xj)

2 − σ̄2

)2
]
.

The sum of these terms will thus be of O(N−2).

• N(N − 1)(N − 2) terms on the form:

(
1

N(N − 1)

)2

E

[(
1

2
(xi − xj)

2 − σ̄2

)(
1

2
(xi − xk)

2 − σ̄2

)]
.

The sum of these terms will thus be of O(N−1).

• N4 − 3N3 −N2 +N terms on the form:

(
1

N(N − 1)

)2

E

[(
1

2
(xi − xj)

2 − σ̄2

)(
1

2
(xk − xn)

2 − σ̄2

)]
.

Since

∣∣∣∣E
[(

1

2
(xi − xj)

2 − σ̄2

)(
1

2
(xk − xn)

2 − σ̄2

)]∣∣∣∣ =

∣∣∣∣Corr

(
1

2
(xi − xj)

2,
1

2
(xk − xn)

2

)∣∣∣∣
× V ar

(
1

2
(xi − xj)

2

)
= O(N−α),

the sum of these terms will be of O(N−α).
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Thus, altogether, V ar(s2N ) = O(N−β). As in Lemma 10, the result then follows from Chebyshev’s inequality.

Lemma 13 Assume x1, . . . , xN , and y1, . . . , yN , are identically distributed random variables, with means μX , μY , vari-
ances σ2

X , σ2
Y , covariance σXY = Cov(xi, yi) for all i, and finite fourth moments. Assume that |Corr(xi, yj)| ≤ CN−α,

and that |Corr((xi − xj)2, (yk − yn)2)| ≤ CN−α, where α > 0, and i, j, k, n are different indexes. Then the sample
covariance

sXY
def
=

1

N − 1

N∑
i=1

(xi − x̄N )(yi − ȳN )

satisfies

sXY = σXY +Os(N
−2β/3),

where β = min(α, 1).

Proof of Lemma 13: Identical to the Proof of Lemma 12.

Lemma 12, together with (60) and (63) therefore implies (51), and Lemma 13 together with (61) and (65) implies (52).
We have shown Lemma 9. .

Plugging (51-52) into (48), we get

ρ[DN ,ΠN ] =
S2
1 +

∑T
i=2 ζiSi,1

S1

√
S2
1 +

∑T
i=2 ζ

2
i S

2
i +

∑T
i=1,j>i 2ζiζjSj,i

+Os(N
−1/3+ε)

=
q(1 + a2(q−1 + q−2) + a3(q−2 + q−3) + a4q−3 + q−4P1(q−1))

q(1 + a22(q
−2 + 3q−3) + 2a2(q−1 + q−2) + 2a3(q−2 + q−3) + 2a4q−3 + 2a2a3q−3 + q−4Q(q−1))1/2

+ Os(N
−1/3+ε),

=
1 + a2(q−1 + q−2) + a3(q−2 + q−3) + a4q−3 + q−4P1(q−1)

1 + a22(q
−2 + 3q−3) + 2a2(q−1 + q−2) + 2a3(q−2 + q−3) + 2a4q−3 + 2a2a3q−3 + q−4Q(q−1)1/2

+ Os(N
−1/3+ε), (66)

where P and Q are polynomials finite orders, and we define a1 = 1. A Taylor expansion of (66) around x = 0, where
x = q−1 now yields,

1 + a2(q−1 + q−2) + a3(q−2 + q−3) + a4q−3 + q−4P1(q−1)

1 + a22(q
−2 + 3q−3) + 2a2(q−1 + q−2) + 2a3(q−2 + q−3) + 2a4q−3 + 2a2a3q−3 + q−4Q(q−1)1/2

= 1− cq−3 + O(q−4)

altogether leading to

ρD = 1− cq−3 + Os(q
−4), (67)

where c > 0 depends on a2, . . . , aT , and when at → 1, i = 2 . . . , aT , then c → 1/2. Of course, this immediately implies that

P
(
|1− ρD − cq−3| ≥ Cq−4

)
≤ Cq−4, (68)

for large N for some bounded constant C > 0.
Now, since correlations are bounded between -1 and 1, for general sequences of random variables, aN , and bN , if

P (|1− ρ[aN , bN ]− f(N)| ≥ o(f(N))) = o(f(N)),

where limN→∞ f(N) = 0, then
1− E(ρ[aN , bN ]) = f(N)(1 + o(1)).

Thus, from (68), it follows that

1−E[ρD] = cq−3(1 + o(1)) ∼ q−3. (69)

A similar expansion of V 1
N + ζ2V 2

N gives

ρ[Va,1 + ζ2Va,2,ΠN ] = 1− cq−5 + Os(q
−6),
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where c = 1/2 when ai → 1, i = 2 . . . , aT , which then leads to

1− E[ρK ] ∼ q−5. (70)

This establishes the relationship E[ρK ] > E[ρD] for large N .

We next study F = 1
Ĉ
, the average distance from an agent to all other agents, and show that

1− E[ρ[D,F ]] ∼ q−1. (71)

We note that (53,54) imply that for i > 1, and fixed α,

Corr(Z1, Z1 + αZi) =
1 + αCov(Z1,Zi)

V ar(Z1)√
1 + 2α

Cov(Z1,Zi)
V ar(Z1)

+ α2 V ar(Zi)
V ar(Z1)

=
1 + αqi−1√

1 + 2αqi−1 + α2(q2i−2 + q2i−3 +O(q2i−4))

=
1 + (αq)−1√

1 + 2(αq)−1 + q−1 + O(q−2))

= 1− 1

2
q−1 +O(q−2),

in turn implying that for α1, . . . , αR, such that α1/(
∑

i αi) ≤ 1− ε, ε > 0,

Corr

(
Z1,

R∑
i=1

Zi

)
= 1− 1

2
q−1 + O(q−2). (72)

Now, from Theorem 10.10 in Bollobas (2001), it follows that if we define R = �log(N)/ log(c)�+1, with probability greater
than 1−N−k for arbitrary k, the maximum distance between any two agents is either R− 1 or R. We will therefore have
that the average distance between an agent, a, and all other agents is

Fa =
1

N

(
Va,1 +

R−1∑
i=2

i(Va,i − Va,i−1) + R

(
N − (Va,1 +

R−1∑
i=2

(Va,i − Va,i−1)

))

= R− R− 1

N
Va,1 −

R−1∑
i=2

R − i

N
(Va,i − Va,i−1).

Now, from (72), if we replace Va,i − Va,i−1 with Za,i,

F̃a
def
=

1

N

(
Za,1 +

R−1∑
i=2

(iZi) + R

(
N −

(
Za,1 +

R−1∑
i=2

Z1

)))

= R − R− 1

N
Za,1 −

R−1∑
i=2

R− i

N
Za,i

we have

Corr(Va,1,−F̃a) = 1− 1

2
q−1 + O(q−2).

A similar argument as that leading to (67) therefore implies that

Corr(Va,1,−Fa) = 1− 1

2
q−1 + O(q−2),

and

ρ[D,−F ] = 1− q

2
+Os(q

−2), (73)
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and therefore, following a similar argument as for ρD, that

E[ρ[D,−F ]] = 1− q

2
+O(q−2).

We use the following triangle-inequality like lemma:

Lemma 14 Assume ρ(a, b) = 1− α, and ρ(a, c) = 1− β, with β > α. Then ρ(b, c) ≤ 1− (
√
β −

√
α)2.

Proof of Lemma 14: Because of the simple renormalizations, a �→ (a − E[a])/σ(a), b �→ (b − E[b])/σ(b), and c �→ (c −
E[c])/σ(c), we can without loss of generality assume that a, b, and c have zero expectations and unit variances. All

correlations can then expressed as, ρ(a, b) = E[ab], etc. We introduce the metric d(a, b) =
√

E[(a− b)2], and we then have
the triangle inequality d(a, c) ≤ d(a, b) + d(b, c), leading to d(b, c) ≥ d(a, c) − d(b, c). We have d(a, b)2 = E[(a − b)2] =
E[a2]+E[b2]−2E[ab] = 2−2(1−α) = 2α, and similarly d(a, c)2 = 2β. Finally, d(a, c)2 = 2−2ρ(a, c) which via the triangle

inequality leads to 2− 2ρ(a, c) ≥ (
√
2β −

√
2α)2 = 2(

√
β −

√
α)2, leading to the result. We are done.

Equations (68) and (73), together with Lemma 14, where a = D, b = −F , c = Π, now implies that if 1−ρ[D,Π] ≤ cq−3,
and 1− ρ[D,−F ] ≥ cq−1, then

1− ρ[−F,Π] = 1− ρF > c(1− ε)q−1

for large N , and thus,
1− E[ρF ] ≥ c(2− ε)q−1,

implying the third part of the Theorem, E[ρD] > E[ρF ].

Finally, for Ĉ, we first note that

E[Va,1] = q + O(N−1+ε),

V ar[Va,1] = q + O(N−1+ε),

E[Fa] = R(1 + O(q−1)),

V ar[Fa] =
R2

q
(1 + O(q−1)),

and more generally that
E[(1− F/R)i] = q−i(ci +O(q−1))

for any fixed i ≥ 1, where ci is a (finite) constant, and c2 = 1. We have

Corr(Va,1, Ĉ) = Corr

(
Va,1,

1

F

)

= Corr

(
Va,1,

1

R− (R − F )

)

= Corr

⎛
⎝Va,1,

1

1−
(
1− F

R

)
⎞
⎠

= Corr

⎛
⎝Va,1,−

F

R
+
∑
i≥2

(−1)i
(
1− F

R

)i
⎞
⎠

= 1− q

2
+O(q−2) +

∑
i≥2

diq
−i

= 1− q

2
+O(q−2).

A similar argument as for ρF , again using Lemma 14, then implies the final part of the theorem, E[ρD] > E[ρ
Ĉ
]. We are

done.

Proof of Theorem 5: For the first part, we note that since (pt−pt−1) is independent of pt−1 (given publicly available infor-
mation), it follows that the price volatility between t−1 and t is equal to (ΣXX)11, σ2

p,t = (ΣXX)11|t−1 = yt
(τv+Yt)(τv+Yt−1)

.

with the convention Y0 = 0. Also, the final period volatility of v − pT is σ2
p,T+1 = 1

τv+YT
. This proves the first part of the

theorem.
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For the second part, we first note that from the definition of y1, it follows that y1 = τv
k1

1−k1
and—defining Kt =∑t

i=1 ki—a simple induction argument further shows yt = τv
kt

(1−Kt−1)(1−Kt)
, t = 1, . . . , T − 1, and yT = τv

1−KT
kT (1−KT−1)

.

We note that all the y1, . . . , yT are all well defined.

Next, we back out the connectedness that is needed to be consistent with the y’s. We have A1 =
√

y1
τu

, At =

At−1+
√

yt
τu

, leading to V̄1
def
=

∑
a Va,1

N
= γ

τ

√
y1
τu

, ΔV̄t
def
= V̄t− V̄t−1 = γ

τ

√
yt
τu

. Thus, if we can replicate, arbitrarily closely,

any sequence of diffusions, through which the average number of signals, V̄t, increases over time, then we can generate any
yt, and thereby any volatility structures. We note that γ is a free parameter that allows us to scale the network to arbitrary
sizes. The result now follows from the following lemma:

Lemma 15 For any T , there are networks of size N , such that V̄T ′ = (1 + o(1))V̄T for T ′ > T , and V̄T ′ = 1
N(1+o(1))

V̄T

for T ′ < T .

This lemma thus states that we can always find a (possibly large) network such that very little happens before and
after time T , with respect to information diffusion. The result follows immediately: For T = 1, a tightly-knit network would
have these properties. For T = 2, a large star network. For T = 3, a star-like network with N2 +N nodes, in which there
are N tightly-nit nodes in the center, each connected to N peripheral agents. For even T ≥ 4, adding longer distance to
the T = 2 (star) network, and for odd T ≥ 5, adding longer distances to the T = 3 network will generate these properties.
Let’s call such a network a T -network.

Finally, any sequence of
V̄t+1

V̄t
, t = 1, . . . , T can be generated by choosing a network with many disjoint 1−, 2−, . . . , T−networks

in such a way so that the relative sizes of the networks match the fractions.
We are done.

Proof of Lemma 3:
i): Let us study the function g, defined by gi = fi, i = 0, . . . , N , and gN+1 = 0, which has the same autocorrelation

function as f , for τ ≤ N , and which always has a maximum at an interior point when f is unimodal, nonnegative, and
f0 = 0. Let us denote that maximum by m, i.e., gm ≥ max(gm−1, gm+1). Of course, the result follows trivially if f ≡ 0, so
we assume that fi > 0 for some i.

We use the following lemma

Lemma 16 Consider a sequence f0, f1, . . . , fN+1, such that f0 = fN+1 = 0. Then

N∑
i=0

fi(fi+1 − fi)− (fk+1 − fk)(fk − fk−1) ≤ 0

for any 1 ≤ k ≤ N .

Proof of Lemma 16: The summation by parts rule implies that
∑N

i=0 fi(fi+1 − fi) = −
∑N

i=0 fi+1(fi+1 − fi), in turn

implying that
∑N

i=0 fi(fi+1 − fi) = − 1
2

∑N
i=0(fi+1 − fi)2. We now have

N∑
i=0

fi(fi+1 − fi) = −1

2

N∑
i=0

(fi+1 − fi)
2 ≤ −1

2
((fk − fk−1)

2 + (fk+1 − fk))
2) ≤ 1

2
2(fk+1 − fk)(fk − fk−1),

where the second inequality follows from the inequality (x+ y)2 = x2 + y2 + 2xy ≥ 0. Thus,
∑N

i=0 fi(fi+1 − fi) + (fk+1 −
fk)(fk − fk−1) ≤ 0, as claimed. This completes the proof of Lemma 16.

Since Rτ is symmetric around τ = 0, we restrict our attention to the region τ ≥ 0, showing that Rτ is nonincreasing
in this region. This will immediately imply i). We prove the result by contradiction: Assume that there is a τ , such that
Rτ+1 −Rτ > 0. Given the definition of Rτ , this means that

N+1−τ∑
i=0

gi(gi+τ − gi) > 0 (74)

for some τ . By zero padding (adding extra zeros to) g, we can without loss of generality assume that the maximum occurs
at m = nτ for some integer n, and that N + 1 − τ = Mτ − 1, i.e., by studying the function g′i = 0, i < v, g′i = gi−v,
0 ≤ i− v ≤ N + 1− τ , g′i = 0, N + 1− τ < i− v ≤ Mτ − 1. Thus, it must be that

⎛
⎝(m−1)τ−1∑

i=0

g′i(g
′
i+τ − g′i)

⎞
⎠+

⎛
⎝ mτ−1∑

i=(m−1)τ

g′i(g
′
i+τ − g′i)

⎞
⎠+

(
Mτ−1∑
i=mτ

g′i(g
′
i+τ − g′i)

)
> 0.
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Now, because g′i is increasing for i ≤ mτ , and decreasing for i ≥ mτ , we can replace g′i with g′riτ , where ri = τ(�i/τ� + 1)

in the first and third term, and by g′
(m−1)τ

for the middle term, leading to

m−2∑
i=0

g′iτ
τ−1∑
j=0

(g′iτ+j+τ − g′iτ+j) ≥
(m−1)τ−1∑

i=0

g′i(g
′
i+τ − g′i),

g′(m−1)τ

τ−1∑
j=0

(g′mτ+j+τ − g′mτ+j) ≥
mτ−1∑

i=(m−1)τ

g′i(g
′
i+τ − g′i),

M−1∑
i=m

g′iτ
τ−1∑
j=0

(g′iτ+j+τ − g′iτ+j) >

Mτ−1∑
i=mτ

g′i(g
′
i+τ − g′i).

But since
∑τ−1

j=0 gk+j+1 − gk+j = gk+τ − gk, this implies that

(
m−2∑
i=0

g′iτ (g
′
(i+1)τ − g′iτ )

)
−
(
g′(m−1)τ (g

′
mτ − g′(m+1)τ )

)
+

(
M−1∑
i=m

g′iτ (g
′
(i+1)τ − g′iτ )

)
> 0,

in turn leading to (
M−1∑
i=0

g′iτ (g
′
(i+1)τ − g′iτ )

)
+ (g′(m−1)τ − g′mτ )(g

′
(m+1)τ − g′mτ ) > 0.

Now, defining hi = g′iτ , 0 ≤ i ≤ M , it follows that h0 = hM = 0, that h is positive and unimodal, and that this in turn
implies that (

M−1∑
i=0

hi(hi+1 − hi)

)
− (hm − hm−1)(hm+1 − hm) > 0.

However, from Lemma 16 no such sequence can exist, and thus neither can a sequence g satisfying (74). So, R is nonincreasing
on the positive axis, and it must therefore be unimodal (with maximum at 0). We have shown i).

ii): It is easy to show that (ΔnR)(τ) =
∑N−τ

i=1 fi(Δ
nf)i. Thus, if Δnf is positive (negative), so is Rτ . This, in turn,

implies that Rτ has at most n− 1 turning points.

Proof of Theorem 6: The proof is based on the following standard lemma:

Lemma 17 Assume a normally distributed random variable, y ∼ N(μ, σ2). Then E[|y|] = σ
√

2
π
e
− μ2

2σ2 +μ(1−2Φ(−μ/σ)),

where Φ is the cumulative normal distribution of a standard normal variable.

We note that from (5) and given that v = v̄ + η, it follows that agent a’s net time-t demand is

γaΔxa,t = Qa,t(za,t − pt)−Qa,t(za,t−1 − pt−1)

= Qa,t

(
v̄ + η +

Qt−1

Qa,t
ξa,t−1 +

qt

Qa,t
ea,t −

(
τv

τv + Yt
v̄ +

Yt

τv + Yt
(v̄ + η) +

1

τv + Yt

t∑
i=1

(Ai −Ai−1)τuiui

))

− Qa,t−1

(
v̄ + η + ξa,t−1 +−

(
τv

τv + Yt−1
v̄ +

Yt−1

τv + Yt−1
(v̄ + η) +

1

τv + Yt−1

t−1∑
i=1

(Ai − Ai−1)τuiui

))

= qa,tea,t︸ ︷︷ ︸
∼N(0,qa,t)

−
(

Qa,t

τv + Yt
− Qa,t−1

τv + Yt−1

)(
τvη −

t−1∑
i=1

(Ai − Ai−1)τuiui

)
− Qa,t

τv + Yt
(At − At−1)τuiut

︸ ︷︷ ︸
∼N(0,r̂2a,t)

where

r̂2t =

(
Qa,t

τv + Yt
− Qa,t−1

τv + Yt−1

)2

(τv + Yt−1) +

(
Qa,t

τv + Yt

)2

yt =
Q2

a,t−1

τv + Yt−1
−

Q2
a,t

τv + Yt
+

q2a,t

τv + Yt
.
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Recalling that qa,t = τΔVa,t and Qa,t = τVa,t, this leads to

γaΔxa,t =
√

τΔVa,t

(
ωa,t +

ra,t
√
τ√

ΔVa,t
ξt

)
,

where ωa,t ∼ N(0, 1) is independent of ξt ∼ N(0, 1) and across agents,

r2t =
V 2
a,t−1

τv + Yt−1
−

V 2
a,t

τv + Yt
+

ΔV 2
a,t

τv + Yt
,

when ΔVa,t > 0, and
γaΔxa,t = ra,tτξt,

when ΔVa,t = 0. Assuming that ΔVa,t > 0, we note that γa
Δxa,t

τΔVa,t

∣∣∣ ξt ∼ N

(
ra,t

√
τ√

ΔVa,t
ξt, 1

)
. The law of large numbers,

together with Lemma 17, then in turn implies that, conditioned on ξt,

γa
1

M

∑
a

|Δxa,t| →a.s.

√
τΔVa,t

⎛
⎝√ 2

π
e
− τr2a,tξ

2
t

2ΔVa,t +
ra,t

√
τ√

ΔVa,t
ξt

(
1− 2Φ

(
− ra,t

√
τ√

ΔVa,t
ξt

))⎞⎠ .

It follows immediately that the unconditional expectation of the first term (not conditioning on ξt) is
√

2
π

√
τΔVa,t√
τr2a,t
ΔVa,t

+1

=

√
2
π

√
τΔVa,t√

τr2a,t+ΔVa,t

. For the second term, we use the fact that E[yΦ(ay)] =
√

1
2π

a√
a2+1

, for a random variable y ∼ N(0, 1),

to get

√
τΔVa,tE

[
ra,t

√
τ√

ΔVa,t
ξt

(
1− 2Φ

(
− ra,t

√
τ√

ΔVa,t
ξt

))]
=

√
2

π

√
τΔVa,t

r2a,tτ

ΔVa,t√
1 +

r2a,tτ

ΔVa,t

=

√
2

π

√
τ

τr2a,t√
τr2a,t +ΔVa,t

.

Summing the two terms together, we get

E

[
1

M

∑
a

|Δxa,t|
]
→a.s.

τ

γa

√
2

π

(
r2a,t +

ΔVa,t

τ

)
.

We note that this formula also holds when ΔVa,t = 0, since E|ra,tτξt| = τ
√

2
π
r2a,t. This finally leads to (20)

Xt =
τ

N

N∑
a=1

1

γa

√
2

π

(
r2a,t +

ΔVa,t

τ

)

=
τ

N

N∑
a=1

1

γa

√√√√ 2

π

(
V 2
a,t−1yt

(τv + Yt−1)(τv + Yt)
− 2Va,t−1ΔVa,t

τv + Yt
+

ΔVa,t

τ

)

=
τ

N

N∑
a=1

1

γa

√√√√ 2

π

(
V 2
a,t−1

τv + Yt−1
−

V 2
a,t

τv + Yt
+

ΔV 2
a,t

τv + Yt
+

ΔVa,t

τ

)
.

Now, if one of the γa → 0, then agent Va,t will determine At, yt, and Yt. In this case, we get

Xt =
τ

N

N∑
a=1

1

γa

√√√√√ 2

π

⎛
⎝ V 2

t−1
τuτ2

γ2
a

ΔV 2
t

(τv + τuτ2

γ2
a

∑t−1
i=1 ΔV 2

t )(τv + τuτ2

γ2
a

∑t
i=1 ΔV 2

t )
− 2Vt−1ΔVt

τv + τuτ2

γ2
a

∑t
i=1 ΔV 2

t

+
ΔVt

τ

⎞
⎠.
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Using the fact that Vt =
∑

ΔVt, leading to the inequality V 2
t ≤ t

∑t
i=1 ΔV 2

i (from E[x2] ≥ E[x]2), it follows that for large
ΔVt, the third term will be dominant, and therefore any sequence of Xt can be generated by choosing ΔVt appropriately.
This shows the second part of the theorem.

We are done.

Proof of Theorem 7: We first show the second result: We use (24,26) to define

R̂t = (At −At−1)τutRt − ytv̄ = ytη + (At − At−1)τuiui,

and, of course, R̂1, . . . , R̂t can be backed out of p1, . . . , pt. Now, it is straightforward to use (26) to show that

pt = v̄ +
1

τv + Yt

(
Ytη +

t∑
i=1

(Ai −Ai−1)τuiui

)

= v̄ +
1

τv + Yt

t∑
i=1

R̂t = v̄ +
1

τv + Yt

(
Ytη +

t∑
i=1

(Ai −Ai−1)τuiui

)
. (75)

Using this relation, we get

γaΔxa,t = Qa,t(za,t − pt)−Qa,t−1(za,t−1 − pt−1)

= Qa,t

(
v̄ + η +

Qt−1

Qa,t
ξa,t−1 +

qt

Qa,t
ea,t −

(
v̄ +

1

τv + Yt

t∑
i=1

R̂t

))

− Qa,t−1

(
v̄ + η + ξa,t−1 −

(
v̄ +

1

τv + Yt

t∑
i=1

R̂t

))

= qa,tea,t +Qa,t

(
η − 1

τv + Yt

(
Ytη +

t∑
i=1

(Ai −Ai−1)τuiui

))

− Qa,t−1

(
η − 1

τv + Yt−1

(
Yt−1η +

t−1∑
i=1

(Ai −Ai−1)τuiui

))

= qa,tea,t︸ ︷︷ ︸
∼N(0,qt)

+
Qa,t

τv + Yt

(
τvη −

t∑
i=1

(Ai −Ai−1)τuiui

)

− Qa,t−1

τv + Yt−1

(
τvη −

t−1∑
i=1

(Ai − Ai−1)τuiui

)

= qa,tea,t︸ ︷︷ ︸
∼N(0,qt)

−
(

Qa,t

τv + Yt
− Qa,t−1

τv + Yt−1

)(
τvη −

t−1∑
i=1

(Ai −Ai−1)τuiui

)
︸ ︷︷ ︸

∼N(0,τv+Yt−1)

− Qa,t

τv + Yt
(At −At−1)τuiut︸ ︷︷ ︸

∼N(0,yt)

= qa,tea,t −
(

Qa,t

τv + Yt
− Qa,t−1

τv + Yt−1

)
ft−1 − Qa,t

τv + Yt
gt,

where f1 = τvη ∼ N(0, τv), ft = ft−1 + gt, gt ∼ N(0, yt), ft|ft−1 ∼ N(ft−1, yt).
We note that the coefficient in front of ft−1 is strictly positive. The total trading volume at times t and t + 1 then

have the form:

Wt =
∑
a

|α1
a,tξa,t − α2

a,tft−1 − α3
a,tgt|,

Wt+1 =
∑
a

|α1
a,t+1ξa,t+1 − α2

a,t+1(ft−1 + gt+1)− α3
a,t+1gt+1|,

where ξa,t, ξa,t+1, ft−1, gt, and gt+1 are all jointly independent, and all α’s are positive.
The result now follows from the following lemma:
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Lemma 18 Assume that Ã, B̃ and z̃ are independent random variables with standardized normal distributions. Then,
for any a > 0 and b > 0, Cov(|aÃ + z̃|, |bB̃ + z̃|) > 0.

Proof of Lemma 18: First, we note that if Cov(X̃, Ỹ |Z̃1, · · · , Z̃n) > 0 for all realizations of the random variables Z̃1, . . . , Z̃n,

then it must be that Cov(X̃, Ỹ ) > 0 unconditionally. This follows from the law of iterated expectations, since

Cov(X̃, Ỹ ) = E[X̃Ỹ ]− E[X̃]E[Ỹ ] = E
[
E[X̃Ỹ ]−E[X̃]E[Ỹ ]|Z̃

]
= E[Cov(X̃, Ỹ )|Z̃] > 0.

Now, define Z1 = a|Ã|, Z2 = b|B̃|. Then it follows that E[|aÃ + z̃| |Z1] = E[max(Z1, |z̃|)], E[|bB̃ + z̃| |Z2] =

E[max(Z2, |z̃|)], and E[|aÃ+ z̃||bB̃ + z̃| |Z1, Z2] = E[max(Z1, |z̃|)max(Z1, |z̃|)], so

Cov(|aÃ + z̃|, |bB̃ + z̃| |Z1, Z2) = Cov(max(Z1, |z̃|),max(Z2, |z̃|) |Z1, Z2) > 0

where the inequality follows from max(c, x) being a monotone transformation of x, so max(Z1, |z̃|), and max(Z2, |z̃|) are
comonotonic. Given the argument, the positivity must then also hold unconditionally, and the lemma therefore follows.

Now, this lemma implies that all the terms that make up Wt and Wt+1 have pairwise positive covariances, and it is
indeed the case that Cov(Wt,Wt+1) > 0, showing the second result.

For the third result, we proceed as follows: It follows from (75) that

v − pt =
1

τv + Yt
ft = η − 1

τv + Yt

t∑
i=1

R̂i. (76)

Therefore, since v − pt−1 is independent of pt−1, the same holds for ft−1 (and, of course for gt), trading volume is indeed
independent of pt−1, and further of pt−i for all i > 1, showing the third result.

For the first result, from (76), the relationship

|pt − pt−1| =
∣∣∣∣ 1

τv + Yt−1
ft −

1

τv + Yt
ft−1

∣∣∣∣ =
∣∣∣∣
(

1

τv + Yt−1
− 1

τv + Yt

)
ft−1 − 1

τv + Yt
gt

∣∣∣∣
follows, and a similar argument as for trading volume over time then implies that Cov(|pt − pt−1|,Wt) > 0, showing the
first result.

We are done.
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