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Abstract

We analyze whether liquidity risk, in addition to expected illiquidity, affects ex-
pected returns on credit default swaps (CDSs). First, we construct a measure of CDS
market illiquidity from divergences between published credit index levels and their
theoretical counterparts, the so called index-to-theoretical bases. Non-zero and time-
varying bases are observed across credit indices referencing North American and Eu-
ropean names of both the investment grade and high yield universes. An aggregation
of bases can be viewed as a summary statistic of the impact of all the different dimen-
sions of illiquidity that are present in the CDS market. Consistent with this view, the
measure correlates with transaction costs, funding costs, and other commonly used
illiquidity proxies. Then, we construct a tradable liquidity factor highly correlated
with innovations to the CDS market illiquidity measure and estimate a factor pricing
model, which accounts for market risk and default risk in addition to liquidity risk and
expected illiquidity. Liquidity risk is priced in the cross-section of single-name CDS
returns and has a larger contribution to expected returns than expected illiquidity.
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market illiquidity from divergences between published credit index levels and their the-
oretical counterparts. Then, we construct a tradable liquidity factor and investigate the
extent to which exposure to this factor is priced in the cross-section of single-name CDS
returns.

Studying the impact of liquidity risk on CDSs is important for several reasons. From
a theoretical perspective, CDSs are interesting as these derivatives trade in a relatively
opaque, dealer-dominated, decentralized market and as such are subject to numerous
sources from which illiquidity may arise. From a practical perspective, the issue is impor-
tant for the trading, pricing, hedging, and risk-management of CDSs. This is underscored
by the recent five billion dollar trading loss at J.P. Morgan associated with relatively
illiquid CDS market strategies (see ’London whale’ rattles debt market, Wall Street Jour-

nal, April 6, 2012). From a regulatory perspective, liquidity risk is important given the
potential systemic nature of the CDS market.

Net protection buyers use the CDS market to hedge existing credit risk exposure,
while net protection sellers, typically the marginal liquidity providers, use the market for
speculative motives. When market liquidity deteriorates, CDS spreads tend to widen and
protection sellers experience mark-to-market losses that, in particular, lead to reduced
liquidity provision of net protection sellers. If protection sellers are wealth constrained
losses may eventually result in contract liquidations, which are particulary costly because
of the reduced liquidity. Therefore, protection sellers may require a premium for bearing
the risk associated with covariation between CDS returns and market-wide liquidity, which
is the notion of liquidity risk on which our analysis focuses.1

Since CDSs trade in over-the-counter (OTC) markets with no readily available trans-
action data, it is very difficult to apply standard measures of liquidity. Instead, in this
paper we capture illiquidity by the extent to which market prices deviate from fundamental
values. In particular, we consider a law of one price type relation between the published
level of a credit index and the theoretical level inferred from a basket of single-name CDSs
that replicates the cash flows of the index. We denote the difference between the two
levels as the index-to-theoretical basis and refer to an index-to-theoretical basis in percent
of the current index level as the percentage index-to-theoretical basis.2 The CDS market
illiquidity measure is constructed as a weighted average (by number of index constituents)
of the absolute value of percentage index-to-theoretical bases. The average is taken over
ten credit indices that reference the most liquid North American and European names of
both the investment grade and high yield universes and therefore cover a substantial part
of the overall CDS market.

The rationale behind the construction of our illiquidity measure is index arbitrage.
Hedge funds and trading desks at investment banks or other large financial institutions
usually engage in relative value trades that keep the published and theoretical index levels
in line. Deviations between the two levels indicate that market participants are temporarily
unable or unwilling to execute relative value trades. Thus, our measure captures illiquidity
not only in terms of the transaction costs and margin requirements of these trades but
also, in a broader sense, in terms of capital constraints and other limits to arbitrage. In
other words, we view our illiquidity measure as a summary statistic of the impact of all
the different dimensions of illiquidity that are present in the CDS market.

1This notion of liquidity risk (covariation between returns and a market-wide liquidity factor) has been
used, amongst others, by Pástor and Stambaugh (2003) and Acharya and Pedersen (2005) in the stock
market and by Lin, Wang, and Wu (2011) and Bongaerts, de Jong, and Driessen (2012) in the corporate
bond market.

2Practitioners and the financial press usually refer to the index-to-theoretical basis as the index skew.
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We find non-zero index-to-theoretical bases across all ten credit indices that we include
in the construction of the CDS market illiquidity measure. Index-to-theoretical bases are
usually of moderate size, but widen considerably during the 2007–2009 financial crisis and
in its aftermath. At the peak of the crisis, index-to-theoretical bases of credit indices
referencing investment grade and high yield names reach, respectively, up to 60 and 300
basis points (bps) in absolute value, and the CDS market illiquidity measure reaches
29%. Consistent with interpreting our aggregate measure as capturing illiquidity in broad
terms, we show that it correlates with other liquidity measures, capital supply measures,
and measures of overall market conditions.

We then investigate if liquidity risk is priced in the cross-section of single-name CDS
returns. For this purpose, we set up a factor pricing model which accounts for market
risk and default risk in addition to liquidity risk and expected illiquidity.3 In the model
liquidity risk arises due to return covariation with respect to a market-wide liquidity factor
and expected illiquidity reflects the expected transaction cost.

The market-wide liquidity factor is the return on a diversified portfolio of credit index
relative value trades. These are based on a simple strategy that holds both the credit
index and its replicating basket so as to profit from a contracting index-to-theoretical
basis. Consequently, the liquidity factor is tradable and highly correlated with innovations
to the CDS market illiquidity measure.

Expected transaction cost are factorized in two terms: The expected cost conditional
on a transaction and the likelihood with which a transaction occurs. We capture the former
by the average cost of a weekly round-trip, while the latter is calibrated to average weekly
turnover across CDSs. We compute turnover at the reference entity level from notional
values of transactions among customers of the Depository Trust & Clearing Corporation
(DTCC), a major settlement service provider for transactions of OTC derivatives.

We estimate the factor pricing model on a large data set of single-name CDS contracts
referencing 663 North American and European entities and covering the period June 1,
2006, to February 1, 2012. The CDS contracts are sorted into portfolios that exhibit
variation in credit quality and the level of illiquidity. Special attention is paid to the
computation of expected excess returns. Average realized excess returns on CDSs are very
noisy estimates of expected excess returns because of the the short sample period and
the peso problem that arises in the return computation of securities subject to default
risk. This peso problem is due the rare occurrence of defaults and the extreme returns
associated with them. For these reasons, we follow Bongaerts, de Jong, and Driessen
(2011, henceforth BDD) in obtaining forward-looking estimates of conditional expected
excess returns by using Moody’s KMV Expected Default Frequencies (EDFs) to calculate
expected default losses. Across all portfolios, unconditional expected excess returns are
positive from a protection seller’s perspective, ranging from 0.37% per annum for a portfolio
of the most liquid high-credit-quality CDSs to 5.04% per annum for a portfolio of the most
illiquid low-credit-quality CDSs.

The model is estimated in two steps. In the first step, we estimate factor loadings.
The CDS portfolios have significant loadings on the market, default, and liquidity factors,
which together explain between 39% and 77% of the time-series variation in CDS portfolio
returns. Sellers of CDS protection tend to realize negative returns, when the stock market
drops, default risk increases, and CDS market illiquidity increases. In the second step, we

3In principle, counterparty risk could also be a determinant of CDS returns. However, Arora, Gandhi, and
Longstaff (2012) find that the effect of counterparty risk on CDS spreads is negligible, which is consistent
with the widespread use of collateralization and netting agreements. Hence, we do not take counterparty
risk into account in our factor pricing model.
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estimate factor prices of risk from a cross-sectional regression of expected excess returns
net of expected transaction costs on first-step factor loadings. We find that liquidity risk is
both a statistically significant and economically important determinant of expected excess
returns. For instance, considering the difference between the expected excess returns on the
portfolio of the most illiquid low-credit-quality CDSs and the portfolio of the most liquid
high-credit-quality CDSs, 1.89% is due to liquidity risk, while 0.95% of this difference is due
to expected illiquidity and another 1.88% is due to market and default risk. Alternatively,
considering the average expected excess returns across test portfolios, 0.55% is due to
liquidity risk, while 0.29% of the average is due to expected illiquidity and another 0.57%
is due to market and default risk. Not only is the compensation for liquidity risk significant,
it appears to be larger than the expected illiquidity component.

We also conduct a series of robustness checks and find that our results are robust to
changes in the methodological setup, the use of alternative liquidity and default factors, and
the inclusion of additional factors, amongst others, liquidity factors from other markets.
Concerning the latter, we find some evidence that exposure to Treasury and stock market
liquidity is priced in the cross-section of CDS returns in addition to exposure to CDS
market liquidity, while this does not appear to be the case for corporate bond market
liquidity.

The analysis of liquidity effects in the cross-section of single-name CDS returns is
related to that by BDD. They consider an equilibrium asset pricing model with liquidity
effects that arise from stochastic transaction costs. Agents are exposed to a non-traded
risk factor, which creates a demand for hedge assets. In equilibrium, expected returns
on hedge assets are related to both expected illiquidity and liquidity risk as captured by
covariation between transaction cost innovations and the non-traded risk factor. However,
in their empirical analysis of the CDS market, BDD only find a significant premium for
expected illiquidity, while the liquidity risk premium is negligible. In contrast, using a
novel measure of CDS market illiquidity and a different notion of liquidity risk, we find
strong evidence for a significant liquidity risk premium.

Using pre-crisis data, Tang and Yan (2007) and Bühler and Trapp (2009) also study
liquidity risk in CDS markets. Tang and Yan (2007) regress CDS spreads on expected
illiquidity and liquidity betas inspired by Acharya and Pedersen’s (2005) liquidity-adjusted
CAPM. They find suggestive evidence that liquidity risk affects CDS spreads. In contrast,
we estimate a formal factor pricing model using returns and a forward-looking estimate of
expected returns instead of CDS spreads. Bühler and Trapp (2009) estimate a reduced-
form model which allows CDS spreads to be affected by the liquidity of the underlying
bonds. In contrast, our focus is on the effect of exposure to market-wide liquidity risk.

Finally, our paper is also related to Fontaine and Garcia (2012), Hu, Pan, and Wang
(2013), and Pasquariello (2011) in how we construct the CDS market illiquidity measure.
Both Fontaine and Garcia (2012) and Hu et al. (2013) consider the U.S. Treasury market
and derive illiquidity measures, respectively, based on price and yield deviations from a
fitted term structure model. Pasquariello (2011) considers three different parity relations
to infer a ”market-dislocation index.” Similar to our results, Hu et al. (2013) find that
liquidity risk is priced in the cross-section of returns on hedge funds and currency carry
strategies and Pasquariello (2011) shows that exposure to his index is priced in the cross-
section of stock returns.

The paper proceeds as follows: Section 2 presents the construction of the CDS mar-
ket illiquidity measure and Section 3 describes its time series properties. Asset pricing
implications are discussed in Section 4 and Section 5 concludes.
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2 Construction of CDS Market Illiquidity Measure

This section presents the construction of the CDS market illiquidity measure and the data
used. Furthermore, it briefly describes credit indices and the replication argument on
which index arbitrage is based.

2.1 Credit Indices

Credit indices are standardized credit derivatives that provide insurance against any de-
faults among its constituents. They allow investors to gain or reduce credit risk exposure in
certain segments of the market. Due to their widespread use and standardized terms, they
trade with lower costs and higher liquidity than most single-name CDSs or cash bonds.4

Credit indices trade in OTC markets for maturities between one and ten years. The
five-year maturity is typically the most liquid and is the focus of our empirical analysis.5

Each credit index is a separate CDS contract with a specified maturity, fixed spread,
and underlying basket of reference entities. Over the life of the contract, the seller of
protection on the index provides default protection on each index constituent, with the
notional amount of the contract divided evenly among the index constituents. In return,
the seller of index protection earns the fixed spread. In case of default, the seller of index
protection pays the loss-given-default and the notional amount of the contract is reduced
accordingly. If the quoted level of the index differs from its fixed spread, counterparties
initially exchange an upfront payments equal to the contract’s present value.

As a clarifying example, suppose that on September 21, 2007, an investor sells a 10
million USD notional amount of protection on the main North American investment grade
credit index (CDX.NA.IG 9) with a maturity of five years and a fixed spread of 60 bps.6 On
that date the index trades at 49.92 bps which translates into an 46,183.13 USD upfront
charge for the seller of protection. Over the next three quarters he receives quarterly
spread payments each being approximately equal to 1/4 × 0.0060 × 10, 000, 000 = 15, 000
USD.7 On September 7, 2008, Fannie Mae and Freddy Mac, both reference names of the
CDX.NA.IG 9, were placed into conservatorship by their regulator. Creditors recovered
91.51 and 94 cents per dollar of senior unsecured debt issued by Fannie Mae and Freddy
Mac, respectively. Thus, the seller of index protection has to compensate losses incurred,
paying 1/125 × (1 − 0.9151) × 10, 000, 000 + 1/125 × (1 − 0.94) × 10, 000, 000 = 11, 592
USD.8 Due to the credit events, the spread payment on September 20, 2008, is reduced
to 1/4 × 123/125 × 0.0060 × 10, 000, 000 = 14, 760 USD. Until expiry of the index on
December 20, 2012, another two credit events occur: First, the default of Washington
Mutual on September 27, 2008, triggers a 1/125× (1− 0.57)× 10, 000, 000 = 34, 400 USD
payout and reduces subsequent spread payments to 1/4×122/125×0.0060×10, 000, 000 =

4For the three-month period from June 20, 2011, to September 19, 2011, market activity reports published
by the DTCC show that the average daily notional amount of trades is 28.8 million USD, on average, across
single-name CDSs referencing corporate names that belong to the 1000 most actively traded single-name
CDSs. In contrast, the average daily notional amount of untranched index transactions is approximately
1.01 billion USD. Furthermore, the average number of trades per day in untranched indices is 25, compared
to 4 trades per day for the average single-name CDS contract.

5Using a representative three-month sample of CDS transaction data, Chen, Fleming, Jackson, Li, and
Sarkar (2011) find that 84% of all index transactions are in the five-year maturity.

6The number following the index name is referred to as the index’s series and uniquely identifies the under-
lying basket of reference names.

7In practice the actual number of days during the quarter is determined by ACT/360 day-count convention.
8Here and in the sequel of this example we assume that cash settlement, the standard settlement method of
credit index transactions, applies. Furthermore, we neglect accrual payments on default and the fact that
recovery values are determined in credit event auctions that usually do not take place on the default date.
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14, 640 USD. Second, the Chapter 11 filing of CIT Group on November 1, 2009, triggers a
1/125 × (1 − 0.68125) × 10, 000, 000 = 25, 500 USD payout and reduces successive spread
payments to 1/4× 121/125 × 0.0060 × 10, 000, 000 = 14, 520 USD.

Twice a year, on the so-called index roll dates in March and September, a new series
of each credit index is launched, with the basket of reference entities revised according
to credit rating and liquidity criteria. Entities that fail to maintain a rating within a
specified range, due to either an upgrade or downgrade, and entities whose CDS contracts
have significantly deteriorated in terms of their liquidity are replaced by the most liquid
reference names meeting the rating requirements. Liquidity is typically concentrated in the
most recently launched series, which are referred to as the on-the-run series. Consequently,
these are the subject of our empirical analysis.

In case of a credit event for one of the reference names, a new version of the index
series starts trading. In the new version, the entity that triggered the event no longer
contributes to the index level because its weight in the basket of reference names is set to
zero. Otherwise weights remain fixed over the life of the contract. Since triggered CDSs
usually continue to trade in the market until the recovery value is determined, multiple
versions of the same index series can trade at the same time. In such cases, we focus on
the most liquid version.

Credit indices are maintained by an administrator which, in case of most indices, is
Markit. The index administrator sets the rules and procedures that govern revision of
entities on the roll dates. In addition, it determines a group of licensed dealers. These
dealers actively make markets for credit indices and, based on their spread quotes, the
administrator computes index levels that are published on a daily basis.

The most liquid credit indices currently traded are the ones that belong to the CDX
North American and iTraxx Europe family. The two index families differ in the region
from which reference entities are eligible for inclusion, in the currency in which they trade,
in the rules that govern revision of entities, and in some technicalities of the contract
terms, e.g., documentation clauses. Table 3 in the Internet Appendix briefly summarizes
index rules and provides additional information concerning the major indices of the CDX
North American and iTraxx Europe families.

2.2 Index Arbitrage

In this section we present the replication argument on which index arbitrage is based.
Investors can gain credit risk exposure either by selling index protection or by selling

protection on a basket of single-name CDSs that replicates the cash flows of the index
contract. Thus, besides the published index level, a theoretical index level can be inferred
from single-name CDS quotes on the index constituents. This gives rise to the notion of an
index-to-theoretical basis, defined as the difference between the published and theoretical
index levels. In perfect capital markets, index arbitrage will keep the index-to-theoretical
bases close to zero.

Suppose that at time t an investor wants to sell index protection with maturity T , fixed
spread C, and notional N . This involves an initial upfront payments equal to the contract’s
present value.9 Instead of selling index protection, the investor can sell protection on the
index constituents via single-name CDSs. In particular, to replicate the payments in the

9In addition, there will be an accrual payment. The seller of index protection is entitled to a full spread
payment on the first payment date after inception of trade, regardless of the actual time of opening his
position. Therefore, he has to compensate the buyer of protection for the fixed spread accrued between
the last spread payment date and the inception of trade. We abstract from these accrual payments in our
discussion of the index arbitrage strategy.
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index contract, the investor must sell protection on each of the It index constituents that,
prior to the inception of trade, have not triggered a credit event. Each single-name CDS
must have maturity T , fixed spread C, and notional N/I, where I denotes the number of
reference entities at the launch of the index’s series. As in the credit index trade, upfront
payments are necessary when trading single-name CDSs at off-par spreads. Hence, the
investor faces costs equal to the aggregate amount of all upfront charges from the single-
name CDS transactions.

Both trades generate the following contingent payments: Until the earlier of the ma-
turity date and the first credit event by one of the remaining index constituents, the
seller of index protection earns quarterly spread payments of A/360 × C × It/I × N ,
while the seller of protection via single-name CDSs receives quarterly spread payments
of

∑It
i=1A/360 × C × N/I. Here It/I × N is the index’s adjusted notional amount and

A/360 denotes the accrual time during a given quarter, determined by ACT/360 day-count
convention. Obviously both payment streams are identical.

In case of a default prior to maturity by one of the remaining reference names, say i∗,
a payment of 1/I × (1 − Ri∗) × N by the seller of index protection becomes due, where
Ri∗ is the recovery per dollar of notional on i∗’s debt. This payment coincides with the
one the seller of protection via single-name CDSs has to make.10

Following the credit event, the notional amount of the index is adjusted to (It−1)/I×N
and quarterly spread payments earned by the seller of index protection reduce to A/360×
C × (It − 1)/I ×N . Since there is also one single-name CDS less in the basket, the seller
of protection via single-name CDSs collects quarterly spread payments of

∑It−1
i=1 A/360 ×

C ×N/I. Thus, payments coincide in this case as well.
Applying the same argument to any possible credit event that may occur prior to

maturity establishes identical payoffs for the seller of index protection and the seller of
protection via single-name CDSs. The theoretical index level, C∗(t, T ), is now obtained
as that fixed spread on the single-name CDSs that makes the replicating basket have zero
net present value. The index-to-theoretical basis B(t, T ) of a credit index is then defined
as B(t, T ) = C(t, T ) − C∗(t, T ), where C(t, T ) denotes the index’s published level as of
time t.

2.3 Data

The credit index data are obtained from Markit, which administrates most commonly
traded credit indices. This data set comprises daily published and theoretical index levels
and the corresponding price quotations for virtually all credit indices. In addition, the
number of licensed dealers that submit spread quotes for the computation of the published
index level is reported.11 We conduct our analysis on ten credit indices that belong to
either the CDX North American or the iTraxx Europe family. From the individual series
of each of these indices, we get daily levels of a continuous on-the-run index at the five-

10Upon default, both the seller of index protection and the seller of protection via single-name CDSs will
receive an accrual payment. The accrual compensates for the protection they provided on the defaulted
reference name since the last premium payment date prior to the credit event.

11We find the number of contributors to be a reliable indicator of trading activity. Trading activity usually
concentrates in the latest version of the on-the-run series. However, following a credit event, trading activity
frequently does not shift to the version of the credit index that is launched on the trading day following
the default date. Instead, it remains with the version including the defaulted name until the recovery value
is set in a credit event auction. The reason for the non-immediate shift is related to the trading of index
tranches. Attachment and detachment points of a new version of a tranche can only be set once the final
auction results are known. As dealers hedge tranche positions using the index contract, they prefer to
continue trading the version including the defaulted name.
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year maturity for the period from September 20, 2006, to February 1, 2012. Whenever
multiple versions of the on-the-run series trade simultaneously, we choose the version with
the largest number of contributing dealers.

The ten credit indices considered in the construction of the CDS market illiquidity
measure can be briefly described as follows: The CDX.NA.IG and the iTraxx Eur (Main)
are broad-based indices that, respectively, reflect the credit risk of North American an
European investment grade entities. Both indices comprise 125 reference names. Among
those, the thirty reference names with the widest five-year CDS spreads constitute the
CDX.NA.IG.HVOL and iTraxx Eur HiVol sub-indices. The 25 financial sector reference
names included in the iTraxx Eur form a separate sub-index, the iTraxx Eur Sr Finls. The
iTraxx Eur Sub Finls is composed of the same reference names as the iTraxx Eur Sr Finls,
however, reference obligations are subordinated. The CDX.NA.HY is comprised of 100
non-investment-grade entities domiciled in North America and its European counterpart,
the iTraxx Eur Xover, counts up to 50 non-investment-grade reference names. BB and
B rated entities of the CDX.NA.HY comprise the CDX.NA.HY.BB and CDX.NA.HY.B
sub-indices, respectively.

Descriptive statistics of the credit index data are reported in Panel A of Table 1.
Both the average and the standard deviation of index levels increase as we consider indices
referencing names with progressively lower credit quality and there is a 0.98 cross-sectional
correlation between the two.

[Table 1 about here.]

Figure 1 displays the time series of on-the-run index levels (thin black line in each
panel) for the main indices of the CDX North American and iTraxx Europe families.
Figures for the sub-indices can be found in the Internet Appendix. Each of the indices
increases shortly before the 2008 March role date, when Bear Stearns was on the brink of
bankruptcy, and after a short period of relief, peaks in the aftermath of the September 2008
events; the credit events of Fannie Mae, Freddy Mac, Lehman Brothers, and Washington
Mutual.

[Figure 1 about here.]

2.4 CDS Market Illiquidity Measure

In addition to published index levels, the panels in Figure 1 also display the theoretical
index levels (thick gray line in each panel) and the corresponding index-to-theoretical bases
(light gray shaded area in each panel). The panels reveal that non-zero index-to-theoretical
bases frequently arise. In particular, between the September 2008 index roll and the next
index roll in March 2009, i.e., at the height of the 2007–2009 financial crisis, bases are wide
and very volatile. For instance, bases of the main indices of North American and European
investment grade credit risk, the CDX.NA.IG and the iTraxx Eur, drop to -61.12 and -
58.55 bps, respectively. These are extreme moves compared to the standard deviations of
these bases which are 11.58 and 9.05 bps, respectively. Among indices of high yield credit
risk, the widening of index-to-theoretical bases is even more extreme. For instance, bases
of the CDX.NA.HY and the iTraxx Eur Xover reach -451.93 and -106.15 bps, respectively,
at the height of the crisis.

The negative sign of the bases at the height of the crisis is related to different trad-
ing conventions of credit indices and single-name CDSs at that time. While credit in-
dices traded with fixed spreads, most single-name CDS transactions were settled at par
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spreads.12 Since credit index levels, in general, exceeded fixed spreads during this period,
sellers of index protection would receive upfront payments in a transaction, while sellers
of single-name CDS protection would not. This made selling of index protection relatively
more attractive for funding-constrained dealers pushing the index below its theoretical
level.

Descriptive statistics of index-to-theoretical bases are reported in Panel B of Table 1.
For both index families, bases of investment grade indices are negative, on average, while
bases of those indices referencing lower-quality credits are positive, on average. Basis
volatility is higher within the CDX North American family than within the iTraxx Europe
family. Within both index families, basis volatility is highest for those indices referencing
the names with the lowest credit quality. The cross-sectional correlation between the
average index level and the basis volatility is particularly strong within the CDX North
American family.

Figure 1 suggests that, for most indices, the basis is negatively correlated with the index
level. The time-series correlation between the index level and the absolute value of the
basis is reported in the last row of Table 1, Panel B, and varies between 0.34 (for iTraxx
Eur Sub Finls) and 0.74 (for CDX.NA.IG). On average, across indices, this time-series
correlation is 0.57.

The time-series correlation between the index level and the absolute value of the basis
and the cross-sectional correlation between the average index level and the basis volatility
suggest that percentage index-to-theoretical bases, i.e., bases in percent of index levels,
are more meaningful when comparing deviations from fundamental values across time and
across indices. Therefore, we construct a CDS market illiquidity measure, denoted by
CDSILLIQt, as a weighted average (by number of index constituents) of absolute index-
to-theoretical bases in percent of current index levels, i.e.,

CDSILLIQt =

nt∑

i=1

wi,t

|Bi(t, 5Y )|

Ci(t, 5Y )
,

where wi,t is the fraction of the number of constituents of index i, i = 1, . . . , nt, relative
to the aggregate number of constituents of the nt indices with available data on date t.
Absolute values of bases rather than the bases themselves are used in the computation
because we are more interested in the magnitude of divergences from fundamentals than
in their direction.13 The CDS market illiquidity measure peaks at 28.84% at the end
of December 2008, i.e., during the market turmoil that followed the collapse of Lehman
Brothers. As can be seen from Figure 2, the CDS market illiquidity measure is strongly
persistent, which is confirmed by its 0.95 first-order autocorrelation at the daily frequency.

[Figure 2 about here.]

12Some single-name CDSs traded with fixed spreads even prior to the implementation of the ISDA’s ’Big
Bang’ Protocol. According to Mitchell and Pulvino (2012), transactions in single-name CDSs with par
spreads of less than 1000 bps were settled at par, while those in single-name CDSs with par spreads above
1000 bps were settled with a fixed spread of 500 bps and an upfront payment. With the implementation
of the ’Big Bang’ Protocol in April 2009, all single-name CDSs trade with fixed spreads.

13As bases can be both positive and negative, in an extreme case it could happen that the individual bases
are non-zero, while their average is zero. This can be circumvented by the use of absolute bases in the
computation of the CDS market illiquidity measure.
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3 Time Series Properties of CDS Market Illiquidity

This section explores time series properties of the CDS market illiquidity measure. In
particular, we investigate its relation to other illiquidity measures, capital supply mea-
sures, and measures capturing overall market conditions. The other illiquidity measures
considered in this section can be divided in two categories: Measures that capture CDS
market illiquidity and measures that capture bond market illiquidity. Exact definitions of
all measures are provided in Appendix A and plots of their time series dynamics can be
found in the Internet Appendix.

3.1 CDS Market Illiquidity Measures

CDS market illiquidity is measured in three ways. First, it is measured by average bid-ask
spreads of single-name CDSs (Bid-Ask). When average bid-ask spreads are wider, index
arbitrage is more expensive, and we expect less arbitrage activity and a wider CDS market
illiquidity measure. Second, CDS market illiquidity is measured by the average absolute
spread change per quote contributed across single-name CDSs (ILLIQ-1). To the extent
that volume can be proxied by the number of contributors, this measure captures price
impact of trade much alike the Amihud (2002) illiquidity measure. Third, CDS market
illiquidity is measured by the average price impact of trade across credit index contracts
(ILLIQ-2). In particular, we construct this measure in the same way as our CDS market
illiquidity measure but using the absolute spread change per quote contributed instead
of the absolute value of the percentage index-to-theoretical basis. Naturally, we expect
higher CDS market illiquidity, the higher the price impact of trade for both CDSs and
credit index contracts.

3.2 Bond Market Illiquidity Measures

To capture bond market illiquidity, we use two proxies for Treasury market illiquidity and a
corporate bond market illiquidity measure. The first Treasury market illiquidity measure
is the yield spread between Resolution Funding Corporation and U.S. Treasury bonds
(RefCorp). As pointed out by Longstaff (2004) both securities have literally identical
credit risk and differences in taxation or transaction costs are too small to explain the
observed spread. Therefore, the spread constitutes a relatively clean illiquidity proxy.
The second proxy is the Hu, Pan, and Wang (2013) Noise measure (Noise). It captures
deviations of U.S. Treasury yields from the respective points on a fitted smooth yield curve.
Hu et al. (2013) argue that deviations from fair values are wider, whenever risk capital is
scarcer. In such circumstances, we also expect less activity by index arbitrage traders and
a wider CDS market illiquidity measure. Finally, we use Dick-Nielsen, Feldhütter, and
Lando’s (2012) λ as a corporate bond illiquidity measure (λ). This measure captures the
common component of several bond-specific liquidity measures. In theory, CDS spreads
and bond yields are linked by a no-arbitrage relation. We, therefore, expect liquidity in
the two markets to be correlated.

3.3 Capital Supply Measures

As explained in Section 2.2, index arbitrage requires capital to make upfront payments and
mark-to-market CDSs. Given that arbitrage traders (as, e.g., hedge fund managers and
proprietary traders at investment banks) are typically highly leveraged, the cost of short-
term debt financing may be an important determinant of illiquidity in the CDS market. We
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use the three-month LIBOR-OIS spread (LIB-OIS) and the spread between three-month
Agency MBS and Treasury general collateral repo rates (Repo) to, respectively, capture
the costs associated with unsecured and secured financing. The three-month LIBOR-OIS
spread is a commonly used measure of risk in (unsecured) interbank markets (see, e.g.,
Filipović and Trolle (2013)), while the repo spread reflects differential collateral values of
Agency MBS and Treasury securities (see, e.g., Bartolini, Hilton, Sundaresan, and Tonetti
(2011)). We expect the CDS market illiquidity measure to widen when funding becomes
more expensive. Another important determinant may be the amount of capital that hedge
funds direct towards index arbitrage. This amount is likely to be correlated with the overall
net asset value managed by hedge funds, which is proxied by the level of the Hedge Fund
Research Global Index (HFRX). This index represents the overall hedge fund universe
both in terms of strategies and geographical locations.

3.4 Market Conditions

Market conditions are captured by three measures. The first measure is the yield spread
between Baa- and Aaa-rated bonds (Default). As shown by He and Milbradt (2013),
increased default risk lowers secondary market corporate bond illiquidity, which further
increases default risk through lower primary market valuations and the associated rollover
losses. Due to this positive feedback loop, we expect a positive relation between the default
spread and the CDS market illiquidity measure. The second measure is the CBOE VIX
index (VIX), which is an option implied estimate of S&P 500 volatility that has become
generally known as the investors’ ”fear gauge.” Brunnermeier and Pedersen (2009) predict
that market illiquidity and market volatility are positively correlated and we expect the
CDS market illiquidity measure to widen when market volatility increases. The third
measure is the average CDS-bond basis across U.S. investment grade bonds (CDS-Bond).
As mentioned above, CDS spreads and bond yields are, in theory, linked by a no-arbitrage
relation. In practice, this relation is less than perfect and gives rise to the CDS-bond basis.
Similar to the index-to-theoretical basis, the size of the CDS-bond basis can be viewed as
capturing illiquidity in broad terms and, therefore, we expect the CDS market illiquidity
measure and the CDS-bond basis to be correlated.

3.5 Results

For each group of explanatory variables, we separately run both univariate and multivariate
ordinary least squares (OLS) regressions of monthly changes in the CDS market illiquidity
measure on monthly changes in the explanatory variables.14 The regression are run using
data up to December 30, 2011, because the Noise measure is available up to this date
only. For those measures that are available on a daily frequency, we obtain the monthly
time series by averaging daily observations within each month. Regression results are
exhibited in Panels A to D of Table 2 and pairwise correlations of monthly changes in the
explanatory variables are reported in Table 3.

[Table 2 about here.]

[Table 3 about here.]

Considering the other CDS market illiquidity measures first (Panel A of Table 2), we
find a significant relation of our illiquidity measure with respect to average bid-ask spreads

14We run regression in first-differences in order to avoid spurious results due to persistence of the dependent
and explanatory variables. Unit root tests are available upon request.
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and price impact of credit index trades. The relation with the other price impact measure
is less strong, as can be seen from its insignificance and the lower value of the adjusted
R2. Collectively, the CDS market illiquidity measures can explain a quarter of the time
series variation of our measure.

Second, consider the relation of our CDS market illiquidity measure with measures
of bond market illiquidity (Panel B of Table 2). Both Treasury bond market illiquidity
measures are strongly significant in univariate regressions, but only the Noise measure
remains significant in the multivariate regression. In contrast, the corporate bond market
illiquidity measure appears to be unrelated to our CDS market illiquidity measure. Overall,
bond market liquidity measures can explain about 40% of the time series variation of the
CDS market illiquidity measure.

Next, consider capital supply measures in Panel C of Table 2. The unsecured fund-
ing cost differential is strongly significant, while the secured one is insignificant. This
indicates that index arbitrage traders primarily fund their trades in unsecured interbank
markets, which is consistent with the fact that CDSs cannot be used as collateral in repo
transactions. Moreover, changes in hedge fund net asset values are significantly related
to changes in the CDS market illiquidity measure and can explain 17% of its time series
variation. The estimated slope coefficient suggests that for each additional index point of
capital managed by hedge funds, the CDS market illiquidity measure decreases by three
basis points. This suggests that in the CDS market, liquidity provision by hedge funds
constitutes an important source of overall liquidity.

Finally, consider the measures of overall market conditions (Panel D of Table 2). On
its own, each of the three measures is significant and can explain between 12% and 28%
of the time series variation of the CDS market illiquidity measure. As can be seen from
its significance in the multivariate regression, the relation with respect to the CDS-Bond
basis is strongest. Thus, the existence of non-zero index-to-theoretical bases can be partly
attributed to slow-moving capital. This is because one of the main implications of slow-
moving capital is that seeming arbitrage opportunities persist across different markets at
the same time.

As can be seen from Table 3, a fair amount of explanatory variables are strongly corre-
lated. Thus, a regression including all twelve variables will be subject to multicollinearity.
Indeed, unreported results show that most variables become insignificant in this regression
and some regression coefficients exhibit the wrong sign. Collectively, all explanatory vari-
ables together can explain 55% of the time series variation of the CDS market illiquidity
measure. This leaves a substantial part of unexplained time series variation and we test
in the next section whether this variation is priced in the cross-section of CDSs returns.

4 Asset Pricing Implications

This section investigates whether liquidity risk is priced in the cross-section of single-name
CDS returns. We focus on liquidity risk captured as return covariation with respect to a
market-wide liquidity factor. As discussed in Acharya and Pedersen (2005), there are other
dimensions of liquidity risk, but it is difficult to empirically disentangle their individual
effects; consequently, we focus on a single dimension of liquidity risk. In addition to
liquidity risk, we also control for the effect of expected illiquidity.
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4.1 Asset Pricing Model

For our analysis, we consider one-week excess returns from a CDS protection seller’s per-
spective. We rely on a factor pricing model in the spirit of the one used by Bongaerts et al.
(2012) to study liquidity effects in corporate bond markets. In the model, factor loadings
of the excess return on a CDS contract referencing entity i, rei,t, are the slope coefficients
βi in the regression

rei,t = αi + βMKT
i MKTt+βDEF

i DEFt+βLIQ
i LIQt+ǫi,t, (1)

where MKTt, DEFt, and LIQt denote the market, default, and liquidity factors, respec-
tively. MKTt is the excess return on a stock market index and DEFt is the excess return
from selling credit index protection. LIQt is given by the excess return on a tradable
liquidity factor that is highly correlated with innovations to the CDS market illiquidity
measure and whose construction is outlined below. The choice of the first two factors
is motivated by BDD, who, in the context of their equilibrium asset pricing model, find
evidence for priced market and default risk in the cross-section of CDS returns.

Since CDSs have zero net present value at inception of trade, it is not obvious how
to compute their excess returns. As shown by Duffie (1999), a CDS can be replicated by
portfolio of par floating rate notes and it has become standard practice (see, e.g., Berndt
and Obreja (2010), BDD, Bao and Pan (2013)) to compute (excess) returns on CDSs based
on this relation. We adopt this practice to compute excess returns and leave additional
details to Appendix B.

In the cross-section, the model relates expected excess returns to expected illiquidity,
factor loadings, and factor prices of risk. Expected illiquidity is captured by the expected
transaction cost, which in turn is given by the expected cost, conditional on a trade
occurring, times the likelihood of trading. Specifically, expected excess returns are given
by

E[rei,t] = E[ci,t]ζ + βMKT
i λMKT + βDEF

i λDEF + βLIQ
i λLIQ, (2)

where λs denote factor prices of risk, ci,t denotes weekly round-trip transaction costs
per dollar of notional amount of a contract referencing entity i, and ζ is denotes the
unconditional likelihood of exiting a CDS contract after one week.15 For our empirical
analysis, we calibrate ζ to the average weekly turnover of CDSs in our sample.

The factor pricing model is estimated in two steps. In the first step, we determine
factor loadings as OLS estimates, β̂i, of the slope coefficients in regression (1). In the
second step, we estimate factor prices of risk via OLS from a cross-sectional regression of
expected CDS returns net of expected transaction cost on first-step factor loadings, i.e.,

Ê[rei,t]− Ê[ci,t]ζ̂ = β̂MKT
i λMKT + β̂DEF

i λDEF + β̂LIQ
i λLIQ + ui, (3)

where ζ̂ is the calibrated value of ζ and Ê[rei,t] and Ê[ci,t] are estimates of expected excess
returns and expected weekly transaction costs, respectively.

In the empirical asset pricing literature, expected returns are typically estimated by
time series averages of realized returns. Average realized excess returns on CDSs, however,

15An alternative way of interpretation is the following: Suppose that investors’ holding periods were known
to be X weeks, then the holding period return is approximately the sum of X one-week returns, while
transaction cost are only incurred once. Consequently, over the holding period the coefficient on E[ci,t] is
one, while over a one-week period the coefficient is ζ ≈ 1/X. Amihud and Mendelson (1986) show that for
an asset with perpetual cash flow and given appropriate assumptions ζ can indeed be interpreted as the
reciprocal of the expected holding period.
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are very imprecise estimates of expected excess returns. This is because of the rare occur-
rence of credit events and the extreme returns associated. As noted by BDD, CDS spreads
and physical survival probabilities can be used to construct forward-looking estimates of
conditional expected h-week excess returns on CDSs, Êt[r

e
i,t+h], that exhibit smaller stan-

dard errors than realized returns. Therefore, their average gives a more precise estimate of
unconditional expected excess returns than average realized returns. Since weekly trans-
action costs are less noisy than realized returns, expected weekly transaction costs can be
estimated with satisfactory precision by their time series averages. Thus, Ê[rei,t] and Ê[ci,t]
in regression (3) are given by

Ê[rei,t] =
1

T

T∑

s=1

Ês[r
e
i,s+1] and Ê[ci,t] =

1

T

T∑

s=1

ci,s,

where T denotes the sample size.
Due to estimation error in first-step factor loadings, standard errors of coefficient es-

timates in regression (3) have to be adjusted for errors-in-variables (EIV). We account
for EIV by use of asymptotic generalized method of moments standard errors (see pp.
240–243 in Cochrane (2001)). In addition, we use standard errors that, besides taking
into account EIV, also account for potential model misspecification. That is, we allow for
the possibility that, even in population, there is no combination of ζ and λs such that
Equation (2) is satisfied. Kan, Robotti, and Shanken (2013) argue that in such cases it
makes sense to consider population parameters that minimize population pricing errors
according to some objective function. This objective function can be chosen such that fac-
tor price estimates under potential model misspecification coincide with the ones assuming
a correctly specified model, i.e., the OLS estimates in regression (3).16 As shown in Kan
et al. (2013), inference under correctly specified and potentially misspecified models can
differ substantially, in particular for factors that exhibit only low correlation with realized
returns. Internet Appendix E describes the standard error computation in more detail.

4.2 Data and Construction of Portfolios and Factors

Data

The daily data we use in the construction of our sample come from Markit, Bloomberg,
and Moody’s Analytics and extend from June 1, 2006, to February 1, 2012. From Markit,
we collect five-year composite mid CDS spreads, the corresponding recovery rates, and the
average rating by Moody’s and Standard & Poor’s (S&P) for all companies domiciled in
North America and Europe.17 Spreads are obtained for CDS contracts written on senior
unsecured debt and denominated in either EUR or USD.18 From Bloomberg, we collect
five-year bid and ask spreads for all EUR and USD denominated senior CDS contracts. We
match CDS contracts from the two sources based on the denominated currency and the
reference entities’ six-digit Reference Entity Database (RED) codes. From Moody’s Ana-
lytics, we obtain one-year and five-year EDFs for all public companies that are contained

16Because ζ is calibrated to average turnover it is not a population parameter in our case. But even if it
were a population parameter potential misspecification could be taken into account.

17The recovery rate is a composite of those reported by dealers. Ratings are adjusted for seniority of the
reference obligation and subcategories are rounded to major rating categories.

18In case that more than one restructuring clause is available, we select the clause standardized contracts
trade with, i.e., the no restructuring clause for USD denominated contracts and the modified modified
restructuring clause for EUR denominated contracts.
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in the Markit database. Thus, our sample consists of North American and European refer-
ence names with data coverage by each of the three providers. Credit events in our sample
are identified from settlement auctions of CDSs and we collect credit event data from the
corresponding settlement protocols and auction results.19

Since the key ingredients to our asset pricing tests, namely CDS returns and estimates
of their conditional expectations, are inferred from mid CDS spreads, we filter those for
stale quotes. A quote is classified as stale, once it does not change over five or more consec-
utive trading days. In this case, only the spread quotation on the first of the consecutive
days is retained in the sample, while the remaining ones are excluded. Furthermore, we
delete all erroneous ’D’ ratings from the ratings data.

From the collected data, we compute realized excess returns on CDSs over distinct one-
week periods and construct weekly observations of conditional expected one-week excess
return estimates and weekly round-trip transaction costs; details of the numerical imple-
mentation are deferred to Appendix B. Weekly observations are sampled on Wednesdays
of the one-week periods. In order to mitigate the impact of outliers, we Winsorize the top
and bottom 0.5% of the realized and conditional return distributions and the top 1% of the
transaction cost distribution.20 Furthermore, we exclude all companies with less than fifty
joint observations of conditional expected returns, realized returns, and transaction costs.
This leaves a sample of 663 companies, of which 424 are domiciled in North America and
239 in Europe, and a total of 141,296 joint observations of conditional expected returns,
realized returns, and transaction costs.

Finally, we obtain CDS volume data from the DTCC’s Trade Information Warehouse
(TIW).21 In particular, we collect gross notional values for the 1000 most active reference
names as well as their weekly transaction activity. This data are only available for part
of the sample period and we use data from the week ending on July 9, 2010, to the week
ending on February 3, 2012.22

Turnover of CDSs and Calibration of ζ

Turnover of assets in fixed supply is typically defined by the ratio of the number of units
of the asset that are traded over a given period and the number of units outstanding. In
case of CDSs, two problems arise with this definition: First, CDSs are in zero net-supply
which means that the number of contracts outstanding changes with the number of con-
tracts traded. Second, CDSs can be written on arbitrary notional amounts. Therefore, we
consider the gross notional value traded over a given week instead of the corresponding
number of contracts in our definition of a CDS’s weekly turnover and we fix the denom-
inator of the ratio at the gross notional value outstanding as of the end of the previous
week. That is, we define weekly turnover of a CDS contract referencing entity i by

Turnoveri,t =
Gross Notional Transaction Activity of Entity i between t and t− 1

Gross Notional Value of Entity i as of t− 1
.

19Creditex and Markit administrate credit event auctions and publish auction results on
www.creditfixings.com. Settlement protocols are published by the ISDA.

20Since transaction costs are non-negative, extreme observations are in the right tail of the distribution.
21Amongst others, the DTCC provides trade execution and post-trade processing services for OTC CDS
transactions to all major credit derivatives dealers and more than 2500 buy-side firms. Transactions among
DTCC customers are recorded in the TIW and the DTCC (2009) claims that those correspond to more
than 95% of global CDS transactions. Weekly data on both current positions in the TIW and transaction
activity are publicly available on the DTCC’s website http://www.dtcc.com.

22Weekly DTCC data are reported on Fridays, while we sample returns and transaction costs on Wednesdays.
The mismatch is not a concern, because only an average of the data enters the asset pricing model.
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Note that transaction activity reported by the DTCC includes only transactions that
involve a transfer of risk between market participants, i.e., portfolio compressions and
assignments to a central clearing counterparty do not contribute to transaction activity.
Thus, regulatory attempts to improve transparency and resilience of the CDS market do
not artificially inflate turnover of CDSs.

The rationale behind this definition of turnover and its link to ζ are as follows: Ne-
glecting the impact of counterparty risk, a seller of CDS protection can offset credit risk
exposure in multiple equivalent ways. First, the contract can be terminated with the ex-
isting counterparty. Second, a new contract with a different counterparty can be entered
at the opposite leg. Third, upon approval by the counterparty, contractual obligations
can be assigned to a third party. If these three types of transaction activity were the only
ones counted by the DTCC, then Turnoveri,t would indeed reflect the likelihood of exiting
an existing position over a one-week period. However, DTCC transaction activity also
includes new CDS trades that do not offset existing positions and, therefore, Turnoveri,t
is an upward biased estimate of actual turnover.23

For our empirical analysis we calibrate ζ as the average weekly turnover of CDS refer-
encing the 555 entities in our sample for which DTCC data are available as well. We find
ζ̂ = 94.86 bps and a median weekly turnover of 61.03 bps. For comparison, Dick-Nielsen
et al. (2012) report a median quarterly turnover of 4.50% for corporate bonds over a similar
sample period, which implies a median weekly turnover of 450/13 bps = 34.62 bps.

Portfolio Construction

We conduct our analysis on a set of 40 equally weighted test portfolios rather than at the
level of individual CDSs. Portfolios are rebalanced at a quarterly frequency and formed
such that they exhibit variation across the credit risk and liquidity dimensions.

The portfolio formation proceeds as follows: On month-ends of March, June, Septem-
ber, and December of a given year, we first sort reference names from best to worst credit
quality either according to the average issuer credit rating over the previous quarter or
according to previous quarter’s average five-year EDF (both estimated from daily observa-
tions over the previous quarter). In case that we sort on average credit ratings, we group
reference names into five credit rating categories: AAA–AA, A, BBB, BB, and B–CCC.
In case that we sort on average five-year EDFs, reference names are grouped into five-year
EDF quintiles. Subsequently, we sort reference names within a given credit risk group,
from most liquid to least liquid, according to their average bid-ask spread over the previ-
ous quarter (again estimated from daily observations) and then group them into bid-ask
spread quartiles in order to determine portfolio membership.

Since the first quarter of data is used for portfolio formation only, this procedure yields
portfolio time series observations from October 11, 2006, to February 1, 2012.24 During
this period, we find two weeks where only a small number of North American reference
names have quoted bid-ask spreads.25 We exclude the corresponding portfolio observations

23Since the DTCC reports gross notional values and transaction activities that aggregate notional amounts
over the entire CDS term structure, we implicitly assume that turnover is the same across all maturities.

24This is due to the fact that portfolio constituents are selected based on data up to and including September
29, 2006, and the actual formation takes place on the following Wednesday, i.e., October 4, 2006. Obviously,
the first return is then observed a week later, i.e., October 11, 2006. On any rebalancing date the portfolio
formation proceeds equivalently.

25Surprisingly, we find some weeks in which virtually no bid and ask quotes are available from the Bloomberg
system for North American reference names. In the entire week from December 20, 2007, to December 26,
2007, we identify 28 bid-ask spread observations for eleven North American reference names. A similar
problem is observed in the week from May 22, 2008, to May 28, 2008, where a total of 38 observations for
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from the analysis, leaving a total of 276 one-week periods during the sample period.

Factor Construction

Since our sample consists of CDSs referencing both North American and European names,
we construct factors in such a way that they reflect risks pertaining to both U.S. and
European markets.

The market factor is given by the equally weighted excess return on the S&P 500 and
the EURO STOXX 50. Similarly, the default factor is constructed as the average excess
return from selling protection on the CDX.NA.IG and iTraxx Eur.26 All excess returns
are computed with respect to one-week OIS rates.

For the construction of the liquidity factor, we consider an implementable trading
strategy. To illustrate its mechanics, suppose that, at the beginning of a one-week period,
index i trades above its theoretical level. The strategy then sells index protection, while
simultaneously buying protection on the basket of single-name CDSs that replicates the
cash flows of the index contract and vice versa, in case that the index trades below its
theoretical level.

As shown in Section 2.2, if held to the index’s maturity, this strategy is an arbitrage
in the textbook sense. However, we consider a one-week holding period in which case the
strategy’s return is risky and given by

sign (Bi,t−1)
(
rIDX
i,t − rBSK

i,t

)
,

where rIDX
i,t and rBSK

i,t denote one-week returns on the five-year index contract and its repli-
cating basket of single-name CDSs, respectively, and Bi,t−1 is the corresponding index-to-
theoretical basis at the beginning of the one-week period.27 Since returns on the strategy
are positive when index-to-theoretical bases narrow, we expect them to be highly (nega-
tively) correlated with innovations to bases.

We apply the strategy to each of the credit indices considered in the construction of
the CDS market illiquidity measure and report return descriptive statistics in Panel A
of Table 4. Strategy volatilities range from 16.36 to 95.41 bps across indices. As noted
by Moskowitz, Ooi, and Pedersen (2012) creating diversified factor portfolios from assets
that exhibit considerable cross-sectional variation in volatilities is challenging. Therefore,
they scale an assets’s return by its conditional volatility before aggregating returns into a
factor portfolio. As estimating conditional volatilities would shorten our sample period,
we instead exploit the positive relation between strategy return volatilities and index levels
and scale strategy returns by the index levels at the beginning of the respective one-week
periods.28 Specifically, the tradable liquidity factor is constructed as

LIQt =

nt∑

i=1

wi,t−1 sign (Bi,t−1)
(
rIDX
i,t − rBSK

i,t

)
,

18 different reference names is available. In addition, we find two dates of the sample period on which we
cannot infer transaction costs for one of the portfolios and linearly interpolate the four missing values. In
order to be sure that this does not introduce a bias in our analysis, we excluded the two dates from the
sample and found virtually identical results.

26In particular, for each index we consider returns on that version of the on-the-run series that has the largest
number of contributing dealers.

27We compute these returns from the upfront charge on a credit index contract and its replicating basket of
single-name CDSs; for details see Appendix B. Whenever an index roll date, troll, falls within a one-week
period, the weekly return is obtained by first computing the return on series Si of index i between t − 1
and troll and then adding to it the return on series Si + 1 over troll to t.

28We find a strong positive relation between index levels and strategy volatilities. For instance, their cross-
sectional correlation is 0.80.
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where wi,t−1 = [1/Ci,t−1]/[
∑nt

j=1 1/Cj,t−1,].

[Table 4 about here.]

Figure 3 displays the time series evolution of the tradable liquidity factor. Its corre-
lation with innovations to the CDS market illiquidity measure is -0.69.29 Its annualized
mean and standard deviation are 2.99% and 1.03%, respectively, and despite its simple
construction the factor’s annualized Sharpe ratio, using Lo’s (2002) correction for non-
independent returns, is 2.34.30 The annualized Sharpe ratios of the individual trading
strategies are 1.65 on average (see Table 4, Panel A). Hence, the high Sharpe ratio of the
factor is, in part, due to the moderate correlations between strategy returns, which are
reported in Panel B of Table 4.

[Figure 3 about here.]

4.3 Results

Descriptive Statistics

Table 5 displays descriptive statistics for the three factors. Over our sample period, average
returns on the market and default factors are negative, but not significantly different from
zero.31 In contrast, the average return on the liquidity factor is positive and significant,
with a t-statistic of 5.44 based on Newey and West’s (1987) heteroscedasticity and autocor-
relation consistent standard error with 24 lags. Correlations among the three factors are
of moderate size. The strongest relation prevails between the market and default factors.
This reflects the fact that positive stock returns are, in general, accompanied by tightening
CDS spreads and, therefore, positive returns from selling credit index protection.

[Table 5 about here.]

Table 6 displays descriptive statistics for the portfolios formed by first sorting CDS
contracts according to credit ratings and then according to bid-ask spreads. Those for
the portfolios formed by first sorting CDS contracts according to five-year EDFs and then
according to bid-ask spreads are provided in Table 4 in the Internet Appendix.

[Table 6 about here.]

Expected returns, estimated as time-series averages of conditional expected returns, are
positive throughout portfolios and strongly significant with t-statistics ranging from around
4.00 to around 13.00. The former reflects the fact that risk neutral default probabilities,
in general, exceed physical default probabilities. Expected returns increase monotonically
with portfolio illiquidity, as captured by the bid-ask spread, and also tend to increase as
credit quality, measured by either credit rating or five-year EDF, decreases. For instance,
we observe a difference of 4.67% in annual expected returns between a portfolio consisting

29Here we use the residual of an AR(2) specification of the CDS market illiquidity measure in order to
compute innovations. The specification is estimated from weekly observations between September 20,
2006, and February 1, 2012.

30Note that the Sharpe ratio is inflated because we neither take into account transaction costs nor mar-
gin requirements (for margin requirements of CDSs, see Rule 4240 of the Financial Industry Regulatory
Authority).

31t-statistics for the mean based on Newey and West’s (1987) heteroscedasticity and autocorrelation consis-
tent standard errors with 24 lags are -0.39 and -1.06 for the market and default factors, respectively.
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of the most illiquid low-credit-quality CDSs (B–CCCQ4) and a portfolio consisting of the
most liquid high-credit-quality CDSs (AAA–AAQ1). We also observe that average realized
returns are not significantly different from zero.32 In absolute value, t-statistics for the
mean range from about 0.10 to about 1.10. This underscores the importance of using
forward-looking information when estimating expected returns.

Average weekly transaction costs, i.e., our estimate of expected weekly transaction
costs, are strongly significant with t-statistics ranging from around 7.00 to around 13.00.
For any of the credit risk categories, average transaction costs increase monotonically
across liquidity quartiles. Moreover, as credit quality decreases, portfolio level CDS spreads
increase monotonically. That is, portfolios exhibit ex-post the properties they were chosen
to reflect ex-ante. Finally, turnover at the portfolio level exhibits only little variation
around the calibrated value ζ̂ = 94.86 bps.

Regression Results

First-step regression results are displayed in Table 7, which reports a factor loading’s
economic magnitude and t-statistic. By economic magnitude we mean the change in a
portfolio’s weekly realized return (in bps) in response to a one standard deviation change
in the respective factor.

[Table 7 about here.]

Loadings on the default factor are significant throughout portfolios and almost mono-
tonically increasing along both the liquidity and credit quality dimensions. A similar
monotone relation prevails among loadings on the market factor although more than half
of them are insignificant and some of them have a counterintuitive negative sign. Load-
ings on the liquidity factor are significant at the five percent level for 32 out of the 40
portfolios.33 These loadings also tend to increase along the liquidity and credit quality
dimensions. However, especially along the liquidity dimension (as captured by the bid-
ask spread) there are exceptions which indicate that portfolios with high bid-ask spreads
do not necessarily exhibit larger liquidity risk. Note that all portfolios exhibit a positive
loading on the liquidity factor indicating that protection sellers systematically realize neg-
ative returns when liquidity vanishes from the CDS market and, therefore, may require
compensation for bearing this risk. Unreported adjusted R2s of the regressions range from
39% to 77% across portfolios.

The results of estimating alternative specifications of the cross-sectional regression (3)
are displayed in Table 8. In the row that begins with the corresponding symbol, we report
factor price of risk estimates. Underneath each estimate we report regular t-statistics in
parenthesis and robust t-statistics in square brackets. Regular t-statistics account for EIV
and robust t-statistics in addition account for potential model misspecification. The last
two rows of each column contain cross-sectional R2s and their 95% confidence intervals.34

[Table 8 about here.]

32Consistent with Bao and Pan (2013), we find that volatility of realized returns on CDSs is strongly related
to contract liquidity, as can be seen from the monotone relation between portfolio volatilities and portfolio
level bid-ask spreads.

33Unreported results for nested single-factor specifications of regression (1) show that, on its own, each of
the three factors constitutes a significant explanatory variable of CDS portfolio returns.

34Standard error computation for cross-sectional R2s proceeds along the lines of Kan et al. (2013). Details
are deferred to Internet Appendix E.
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Factors carry significant prices of risk in one-factor and two-factor models (specifica-
tions 1 to 3) and one-factor and two-factor models that in addition account for expected
illiquidity (specifications 5 to 7). The significant relation between liquidity risk and ex-
pected excess returns also prevails in three-factor models both excluding and including
expected illiquidity (specifications 4 and 8, respectively). Inference under potential model
misspecification is, in general, similar to the one under correctly specified models. Only
in specifications 7 and 8 does inference change upon taking into account misspecification.
Here, insignificance of factor prices is not due largely higher standard errors but a sharp
decrease of point estimates upon taking into account the expected illiquidity.

As it is usually the case in regressions without an intercept, the cross-sectional R2s are
quite high. Moreover, their confidence intervals are fairly tight, which is in sharp contrast
to Lewellen, Nagel, and Shanken (2010) who report wide confidence intervals of cross-
sectional R2s in tests of a number of popular asset pricing models. However, in the tests
expected returns are estimated using average realized returns. Thus, the tight confidence
intervals we observe might be due to the very precise expected return estimates we are
employing in our asset pricing tests.

Recently, Kan et al. (2013) pointed out an important issue concerning factor prices of
risk in multi-factor models. Traditionally, a factor is said to be priced if its factor price of
risk estimate is significantly different from zero. Kan et al. (2013) show that a factor which
is not priced in this sense can significantly improve the model’s overall explanatory power.
Moreover, they show that a factor without significant incremental explanatory power has
an insignificant coefficient in a regression of expected returns on return covariances with
factors, or, equivalently, in a regression on one-factor model loadings. They, therefore,
argue to consider these coefficients in order to determine the relevant factors in a multi-
factor model. We run such regressions and report the results in Table 5 in the Internet
Appendix. The results show that under correctly specified models the liquidity factor has
an incremental contribution to the model’s overall explanatory power. Under potential
model misspecification results differ only in case of the three-factor models (specifications 4
and 8) where none of the factors has incremental explanatory power over the other two.

Economic Importance

To assess the economic importance of expected illiquidity and the factors, we use specifi-
cation 8 and decompose the annualized expected excess return on each test portfolio into
four components: The expected illiquidity (defined by 52Ê[ci,t]ζ̂) and the market, default,

and liquidity risk premia (defined by 52β̂F
i λF , F ∈ {MKT, DEF, LIQ}). Figure 4 displays

the resulting decomposition for the 40 test portfolios.
We summarize the information in Figure 4 in two ways: First, we consider the difference

in expected excess returns between the two extreme portfolios, B–CCCQ4 and AAA–
AAQ1. We use the term expected return differential to refer to this difference. Expected
illiquidity contributes 0.95% per year to the expected return differential, while liquidity
risk contributes 1.89% per year. As such, and in contrast to the results of BDD, liquidity
risk is economically more important than expected illiquidity for the pricing of single-
name CDSs. Together market risk and default risk contribute an annualized 1.88% to the
expected return differential.35 That is, the contribution of liquidity risk is similar to what
market and default risk contribute together.

35We compare the contribution of liquidity risk to the sum of contributions of market and default risk because
it is difficult to disentangle their contributions precisely. This is due to co-movement of the market and
default factors and their strongly correlated factor loadings.
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[Figure 4 about here.]

As an alternative way to summarize the information in Figure 4, we average the compo-
nents across test portfolios. In this case, expected illiquidity and liquidity risk contribute
0.29% and 0.55% per year, respectively, to the average expected return across test port-
folios, while the contribution of market and default risk is 0.57% per year. Thus, the two
measures of economic importance are qualitatively consistent.

Comparison to Bongaerts, de Jong, and Driessen (2011)

Our results differ from those of BDD in that we find a statistical significant and econom-
ically important role of liquidity risk, whereas they find no liquidity risk premium. We
argue that this is due to the very different notions of liquidity risk that have been subject
of the two studies.

BDD focus on a rather non-standard notion of liquidity risk that is implied by their
equilibrium asset pricing model. In their model liquidity risk arises due to transaction
costs that may increase when systematic default risk increases. This impairs hedge quality
of CDSs and reduces protection buyers’ demand, which, in equilibrium, leads to lower
expected returns for protection sellers. In contrast, we focus on liquidity risk that arises
from widening CDS spreads when aggregate liquidity deteriorates. Realizing negative
returns, wealth constrained protection sellers may be forced to terminate their positions
exactly when aggregate liquidity is low and, therefore, require a premium for bearing this
risk.

When we estimate our factor pricing model and employ the notion of liquidity risk used
by BDD, we find negligible contributions of liquidity risk to the expected return differential
(0.09% per year) and average expected returns (0.16% per year).36 Contributions of this
form of liquidity risk decrease even further, when we estimate a model that allows our
notion of liquidity risk to affect expected returns as well. Thus, the dissent regarding
priced liquidity risk is indeed due to the very different notions of liquidity risk considered
in our and BDD’s analysis.

4.4 Robustness Checks

In this section, we conduct a number of robustness checks of our benchmark results. First,
we examine whether our results are robust to changes in the methodological setup. Second,
we examine whether our results prevail when using alternative liquidity factors. Third,
we examine whether there are confounding effects due to the fact that the default factor
may itself be affected by liquidity risk. Finally, we examine whether our results are robust
to the inclusion of additional risk factors, e.g., liquidity factors from other markets. For
each robustness check, the results of the cross-sectional regression are reported in Table 9,
while the two measures of economic importance of expected illiquidity and the factors are
reported in Table 10. The two measures typically give similar results so we only comment
on the expected return differential. The construction of some of the additional factors is
detailed in Appendix C.

[Table 9 about here.]

[Table 10 about here.]

36Results are available upon request.
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Methodology

Intercept in the cross-sectional regression In accordance with theoretical predic-
tions, the cross-sectional regression’s intercept is not significantly different from zero (see
specification 1 in Table 9). Since the estimated intercept is negative, contributions of
factors to the expected return differential may be inflated. This is indeed the case for
liquidity risk, whose contribution to the expected return differential increases slightly to
2.04% per year. In contrast, contributions of market and default risk are unaffected by
the inclusion of an intercept. In fact, their joint contribution decreases marginally to an
annualized 1.77%.

ζ as a regression coefficient Instead of calibrating ζ to CDS volume data, we es-
timate it as a regression coefficient. This is tantamount to treating expected transaction
cost as a portfolio characteristic, in which case the model’s cross-sectional relation, given
in Equation (2), is inferred by means of the following OLS regression

Ê[rei,t] = Ê[ci,t]ζ + β̂MKT
i λMKT + β̂DEF

i λDEF + β̂LIQ
i λLIQ + ui. (4)

Specification 2 in Table 9 shows the results. Adding expected transaction costs as an
additional regressor does not impair significance of the factor price of liquidity risk under
correct model specification. However, prices of risk of the other two factors become in-
significant. The estimated value of ζ is about four times the calibrated value used in the
benchmark analysis and implies unreasonably large turnover in the CDS market. Speci-
fication 2 in Table 10 shows that the contribution of expected illiquidity to the expected
return differential increases markedly to 3.76% per year, while liquidity risk contributes
1.36% per year. The contributions of market and default risk approximately offset each
other.

As an additional methodological robustness check we estimate the asset pricing model
by weighted least squares. The results of this robustness check are almost identical to the
ones reported in Section 4.3 and can be found in Internet Appendix F.

Alternative Liquidity Factors

AR(2) residual of CDS market illiquidity measure As an alternative to the trad-
able liquidity factor, we use the residual of an AR(2) specification of the CDS market
illiquidity measure. At the five percent level, 35 out of 40 portfolios load significantly on
this illiquidity factor in first-step regressions. Also the price of liquidity risk is statistically
significant in the second-step cross-sectional regression (see specification 3 in Table 9). Eco-
nomically, the contribution of liquidity risk to the expected return differential decreases to
1.65%, annualized (see specification 3 in Table 10).

Transaction-cost-based illiquidity factor Several recent studies (see, e.g., Acharya,
Amihud, and Bharath (2013), Bongaerts et al. (2012)) capture liquidity risk as return
covariation with respect to innovations to market-wide transaction costs. We aggregate
reference names’ Winsorized weekly transaction costs into a market-wide average and then
take the AR(2) residual of the resulting illiquidity measure as a factor in the asset pric-
ing model (see specification 4 in Tables 9 and 10). In first-step regressions only about
half of the test portfolios exhibit significant exposure to this liquidity factor. Neverthe-
less, the cross-sectional regression gives a significant factor price of liquidity risk and the
contribution of liquidity risk to the expected return differential is 1.24% per year.
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We also show that our results do not hinge on the particular construction of the tradable
liquidity factor. In particular, we construct a tradable liquidity factor along the lines of
Moskowitz et al. (2012) and find very similar results (see Internet Appendix F for details).

Alternative Default Factor

So far we have captured default risk by excess returns from selling credit index protection.
Since we cannot rule out that credit indices are affected by liquidity risk as well and in
order to avoid confounding effects, we construct an EDF-based default factor that should
not be affected by liquidity (see specification 5 in Tables 9 and 10). A small number of
portfolios do not load on the EDF-based default factor and its factor price is statistically
significant under correct model specification. Relative to our benchmark analysis, the
contribution of market and default risk to the expected return differential increases to
2.69% per year. The contribution of liquidity risk decreases to 1.08% per year.

In Internet Appendix F we show that our main results continue to hold when we
consider a default factor that is given by the excess return on a portfolio of corporate
bonds.

Additional Factors

Treasury market illiquidity factor Hu et al. (2013) find that exposure to their Noise
measure, capturing Treasury market illiquidity, is priced in returns on assets that are par-
ticulary vulnerable to liquidity shocks. Consequently, we add the residual of an AR(2)
specification of the Noise measure as an additional factor to the asset pricing model (see
specification 6 in Tables 9 and 10). Only twelve of the CDS portfolios have a significant
loading on this factor at the five percent level. In comparison, all but nine CDS portfo-
lios load significantly on our tradable liquidity factor. In terms of statistical significance,
both Treasury market liquidity risk and CDS market liquidity risk are priced under cor-
rect model specification. In terms of economic importance, Treasury market liquidity risk
contributes 0.64% per year to the expected return differential, while CDS market liquidity
risk contributes about twice as much, 1.29% per year.

Corporate bond market liquidity factor There is ample evidence for priced liquidity
risk in the cross-section of corporate bond returns (see, e.g., Lin et al. (2011), Acharya
et al. (2013)). Due to the no-arbitrage relation between CDS spreads and corporate bond
yields, corporate bond market liquidity risk may also be priced in CDS returns. Thus,
we investigate whether the presence of a corporate bond market liquidity factor affects
the pricing of CDS market liquidity risk (see specification 7 in Tables 9 and 10). The
corporate bond market liquidity factor we use in this robustness check is based on an ag-
gregate of Amihud (2002) illiquidity measures and it is highly correlated with innovations
to Dick-Nielsen et al.’s (2012) λ. Although about a quarter of the CDS portfolios loads
significantly on the corporate bond market liquidity factor, its factor price is insignificant.
With an annualized 1.86% contribution to the expected return differential, pricing of CDS
market liquidity risk is largely unaffected by the presence of the corporate bond market
liquidity factor.

Stock market liquidity factor Both Acharya et al. (2013) and Bongaerts et al. (2012)
show that stock market liquidity risk is priced in the cross-section of corporate bond re-
turns. Therefore, we add a stock market liquidity factor based on the Amihud (2002)
illiquidity measure as an additional factor to the asset pricing model (see specification 8
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in Tables 9 and 10). Due to liquidity commonality, one intuitively expects returns on
CDSs to load positively on stock market liquidity, which is indeed the case. All loadings
on the stock market liquidity factor are positive and most of them are significant at the
five percent level. Under a correctly specified model, the factor prices of stock market and
CDS market liquidity risk are significant, while both factor prices are insignificant under
potential model misspecification. The contribution of stock market liquidity risk to the
expected return differential, 1.52% per year, is about the same as that of CDS market
liquidity risk, 1.48% per year.

In case that the Pástor and Stambaugh (2003) liquidity measure is used to construct
the stock market liquidity factor, we find similar but less strong results in first-step regres-
sions and a counterintuitive negative factor price of risk (see Internet Appendix F).

Balance sheet constraints of financial intermediaries The limits to arbitrage liter-
ature predicts an impact of financial intermediaries’ risk bearing capacity on asset prices.
Adrian, Etula, and Muir (2013) capture such effects by a stochastic discount factor that
depends on the leverage of broker-dealers and show that their model prices portfolios of
stocks and bonds remarkably well. Given the institutional nature of the CDS market, this
market is presumably better suited for investigating the effects of financial intermediaries’
balance sheet constraints on asset prices. As mentioned in the introduction, our factor
measures liquidity in broad terms and may also capture lack of capital of financial inter-
mediaries. We, therefore, check whether Adrian et al.’s (2013) leverage factor mimicking
portfolio drives out our liquidity factor when added to the model. Only a few test portfo-
lios load significantly on this factor. Loadings on the leverage factor mimicking portfolio
and its factor price of risk estimate are counterintuitively negative.37 As can be seen from
specification 9 of Tables 9 and 10, the liquidity factor remains statistically significant and
economic important even in the presence of the leverage factor mimicking portfolio. That
is, in line with its interpretation as a broad liquidity measure, our factor seems to capture
more than just balance sheet constraints of financial intermediaries.

Volatility factor Finally, we include a volatility factor in the asset pricing model.
Volatility risk has been shown to be priced in stock and corporate bond returns (see,
e.g., Ang, Hodrick, Xing, and Zhang (2006) and Bongaerts et al. (2012) for evidence from
stock and corporate bond markets, respectively). We, therefore, include the residual of
an AR(2) specification of the VIX index (see specification 10 in Tables 9 and 10) as a
volatility factor in the asset pricing model. There is some evidence for priced volatility
risk. Although only five test portfolios exhibit significant exposure to the volatility factor
at the five percent level, its factor prices is strongly significant under correctly specified
models. In line with theoretical arguments and prior empirical work, we find a negative
volatility risk contribution of -0.95% per year to the expected return differential. The
contribution of liquidity risk is literally unchanged by the inclusion of the volatility factor.

Internet Appendix F shows that this result also holds for an alternative index-option-
return-based volatility factor and that similar results are obtained for an index-option-
return-based jump factor.

In summary, the robustness checks support priced liquidity risk in the cross-section of
CDS returns. This is also illustrated in Figure 5, which displays the liquidity risk pre-

37We have confirmed that this is a multivariate regression effect. In a one-factor model all test portfo-
lios exhibit significantly positive loadings on the leverage mimicking factor and, in line with theoretical
predictions, its factor price of risk is positive.
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mium across all robustness checks. The upper panel displays the contribution of liquidity
risk to the expected return differential, which in all specifications is larger than 1.08%. The
lower panel displays the contribution to the average expected return across test portfolios,
which in all specifications is larger than 0.35%.

[Figure 5 about here.]

5 Conclusion

Recent empirical research emphasizes that liquidity effects are important for the pricing
of CDSs, but conclusion on whether these effects are due to the level of illiquidity or
its variation has not yet been reached. Therefore, we analyze whether liquidity risk, in
addition to expected illiquidity, affects expected returns on single-name CDSs.

First, we construct a CDS market illiquidity measure from index-to-theoretical bases,
i.e., divergences between published credit index levels and their theoretical counterparts.
Theoretically, non-zero bases can be realized by trading indices against baskets of single-
name CDSs referencing their constituents. These relative value trades keep index-to-
theoretical bases close to zero in perfect capital markets. However, we find non-zero
and time-varying bases across credit indices referencing the most liquid names of both the
investment grade and high yield universes. The CDS market illiquidity measure aggregates
bases across these indices and can be thought of as a summary statistic of the impact of all
the different dimensions of illiquidity that are present in the CDS market. Consistently, the
measure correlates with other liquidity measures, capital supply measures, and measures
of overall market conditions.

Then, we construct a tradable liquidity factor that is highly correlated with innovations
to the CDS market illiquidity measure from returns on credit index relative value trades.
We investigate whether exposure to this factor is priced in the cross-section of single-name
CDS returns and estimate a factor pricing model, which accounts for market risk and
default risk in addition to liquidity risk and expected illiquidity. Our results show that
liquidity risk is significantly priced in the cross-section of single-name CDS returns and
has a larger contribution than expected illiquidity to the difference in expected returns
between the most illiquid low-credit-quality CDSs and the most liquid high-credit-quality
CDSs.

Appendices

A Time Series Properties: Explanatory Variables

A.1 CDS Market Illiquidity Measures

Bid-Ask Bid and ask quotes for EUR or USD denominated senior five-year CDS con-
tracts come from Bloomberg. Contract specific bid-ask spreads are monthly averages over
daily bid-ask spreads, which are calculated whenever more than five non-negative daily
spread observations are available within the month. For each month, Bid-Ask is the aver-
age of contract specific bid-ask spreads.
ILLIQ-1 CDS data for non-government sector companies domiciled in Europe and North
America come from Markit. For European reference names, spreads are for EUR denom-
inated senior five-year CDS contracts with modified modified restructuring clause. For
North American reference names, spreads are for USD denominated senior five-year CDS
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contracts with either modified restructuring or no modified restructuring documentation
clauses. This is because prior to the implementation of the ISDA’s CDS ’Big Bang’ Pro-
tocol on April 8, 2009, almost all single-name CDSs on North-American investment grade
names traded with modified restructuring, while single-name CDSs on North-American
high yield names traded with no restructuring. As part of the changes in trading conven-
tions, due to the implementation of the protocol, CDSs referencing North American names
started trading with standardized contract specifications under which no restructuring is
the applicable documentation clause. Thus, for a given month, spreads for North American
reference names are for the documentation clause with the larger number of observations.
In case of equal numbers of observations, the spreads are for the no restructuring clause.

For each reference name, the ILLIQ-1 measure is the monthly average of absolute daily
spread changes divided by the number of contributors, Depthi,t, to the spread quotation
on day t. That is,

ILLIQi,m =
1

Ni,m

Ni,m∑

t=1

|Ci,t − Ci,t−1|

Depthi,t
,

where for reference name i, Ni,m is the number of spread changes in month m that are
no further apart than four calendar days and Ci,t is the respective CDS spread. For each
month, ILLIQ-1 is the average ILLIQi,m measure over reference names with Ni,m > 5.
ILLIQ-2 Data for the construction of ILLIQ-2 are those described in Section 2.3. For
each day, ILLIQ-2 is the weighted average (by number of index constituents) of the absolute
change in the index level from the previous date with available data divided by the number
of contributors, Depthi(t, 5Y ), across the five-year on-the-run credit indices considered in
the construction of the CDS market illiquidity measure, i.e.,

ILLIQt =

nt∑

i=1

wi,t

|Ci(t, 5Y )−Ci(t− 1, 5Y )|

Depthi(t, 5Y )
,

where Ci(t, 5Y ), nt, and wi,t are defined as in Section 2.4. For each month, ILLIQ-2 is the
average value of ILLIQt over the month.

A.2 Bond Market Illiquidity Measures

RefCorp Resolution Funding Corporation and U.S. Treasury constant maturity yields
come from Bloomberg’s fair value yield curves. The RefCorp measure is the monthly av-
erage of daily yield spreads at the ten-year maturity.
Noise Noise measure data come from Jun Pan’s website http://www.mit.edu/~junpan/.
Noise is the monthly average of daily observations.
λ The monthly time series of Dick-Nielsen et al.’s (2012) λ corporate bond illiquidity
measure comes from Peter Feldhütter’s website http://feldhutter.com/.

A.3 Capital Supply Measures

LIB-OIS USD LIBOR and OIS data come from Bloomberg. LIB-OIS is the monthly
average of daily spread observations between three-month LIBOR and OIS rates.
Repo Repo rates come from Bloomberg. Repo is the monthly average of daily spread
observations between three-month Agency MBS and Treasury general collateral repo rates.
HFRX The monthly time series of the Hedge Fund Research Global Index comes from
Bloomberg.
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A.4 Market Conditions

Default Moody’s yields on seasoned AAA- and BAA-rated bonds across all indus-
tries come from the website of the Board of Governors of the Federal Reserve System
http://www.federalreserve.gov/. Default is the monthly average of daily yield spreads
between BAA- and AAA-rated bonds.
VIX VIX Index data come from Bloomberg. VIX is the monthly average of daily index
levels.
CDS-Bond The time-series of the CDS-bond basis across U.S. investment grade bonds
comes from J.P. Morgan. CDS-Bond is the monthly average of daily observations of the
CDS-bond basis.

B Computation of Returns and Transaction Costs

This Appendix describes the computation of expected and realized returns on a CDS
trading at par, the computation of transaction costs, and the computation of realized
returns on a credit index. Further details of the implementation are deferred to the Internet
Appendix.

We consider the situation in which an investor sells protection on reference name i with
a notional amount N via a T -maturity CDS whose date t par spread is denoted by Ci,t.
Over a one-week period, in which default does not occur, the CDS’s change in net present
value equals

∆CDSi,t = −N (Ci,t − Ci,t−1)PV BPi,t(T ) +N
7

360
Ci,t−1,

where PV BPi,t(T ), defined in Equation (D.2) in the Internet Appendix, is the T -maturity
present value of a basis point on the t-th observation date of the time series. ∆CDSi,t

reflects the value of selling CDS protection at time t − 1 and subsequently covering the
exposure by entering into an offsetting transaction at time t. It can be shown (see, e.g.,
Berndt and Obreja (2010)) that the change in net present value relative to the CDS’s
notional amount approximately equals the excess return on a T -maturity par defaultable
bond issued by reference name i. Thus, the CDS’s realized excess return, rei,t, is

rei,t = − (Ci,t − Ci,t−1)PV BPi,t(T ) +
7

360
Ci,t−1. (B.1)

We use Markit five-year mid spreads and the corresponding recovery rates to construct
one-week realized CDS returns. This is done for each reference name whenever spreads
are available both at the beginning of the one-week period and its end.38 Recovery rates,
Ri, enter Equation (B.1) through the present value of a basis point, PV BPi,t(T ), because
risk neutral survival probabilities are inferred such that end-of-period mid spreads and
recovery rates satisfy the par spread condition, Equation (D.3) in the Internet Appendix,
under the assumption of a constant default intensity.

In the event of default by reference name i between t−1 and t, the change in the CDS’s
net present value equals the negative of loss given default, i.e., ∆CDSi,t = −N (1−Ri),
and, therefore, the CDS’s excess return is rei,t = − (1−Ri). For each reference name
that triggered a credit event, we compute the realized return over the one-week period
that contains the credit event date, using the recovery rate determined in the credit event
auction. In case of failure to pay and Restructuring credit events, we resume realized return

38Recovery rates are set to 40% whenever they are not available.
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computation from the first week following the credit event auction onwards and delete all
intermediate data. Our sample includes a total of 22 credit events among 21 different
reference names and losses per dollar of notional range from 23.38% for the Governor and
Company of the Bank of Ireland to 98.75% for Landsbanki.39

In case that we take into account transaction costs, protection will be sold at the quoted
bid, Ci,t−1 − si,t−1/2, and has to be bought at the quoted ask, Ci,t+ si,t/2, where Ci,t and
si,t denote the time t mid spread and the time t bid-ask spread, respectively. Therefore,
the CDS’s change in net present value becomes

∆C̃DSi,t =−N
(
Ci,t +

si,t
2

−
(
Ci,t−1 −

si,t−1

2

))
PV BPi,t(T )

+N
7

360

(
Ci,t−1 −

si,t−1

2

)
.

Separating parts due to transaction costs from those due to changes in the CDS spread,
∆C̃DSi,t can be written as

∆C̃DSi,t = ∆CDSi,t −N

(
1

2
(si,t + si,t−1)PV BPi,t(T ) +

7

360

si,t−1

2

)
,

and excess returns net of transaction costs, rei,t − ci,t, can be obtained by dividing the
expression in the previous display by the notional amount N . This yields the following
expression for transaction costs, ci,t,

ci,t =
1

2
(si,t + si,t−1)PV BPi,t(T ) +

7

360

si,t−1

2
. (B.2)

In order to compute transaction costs, we use Markit five-year mid spreads and the cor-
responding recovery rates (which determine PV BPi,t(T )) along with a reference name’s
weekly average bid-ask spread inferred from Bloomberg data.40 We use weekly averages in-
stead of end-of-period bid-ask spreads due to a considerable number of missing bid spreads
and/or ask spreads. Whenever an entity’s end-of-period mid spread is available as well
as weekly average bid-ask spreads at the beginning and end of the one-week period, its
transaction costs are constructed according to Equation (B.2).

BDD also show that conditional expected CDS returns can be defined by

Êt[r
e
i,t+T ] = Ci,t ·

J∑

j=1

(
α(tj − tj−1)D(t, tj)Pi(t, tj)

−

tj∫

t∨tj−1

α(u− tj−1)D(t, u)dPi(t, u)

)
+

T∫

t

(1−Ri)D(t, u)dPi(t, u),

(B.3)

where in contrast to expressions (D.1) and (D.2) in the Internet Appendix the time t
physical probability of survival up to time u, Pi(t, u) = P(τi > u|τi > t), integrates
payoffs rather than the risk neutral survival probability. Physical survival probabilities
are extracted from Moody’s KMV one-year and five-year EDFs through

P(τi > 1|τi > t) = 1− EDF1Yi,t and P(τi > 5|τi > t) = (1− EDF5Yi,t)
5,

39Two restructuring credit events occurred in respect of Irish Life & Permanent in 2011.
40In the above notation, si,t denotes the weekly average bid-ask spread of entity i. We consider only non-
negative bid-ask spreads for the computation of weekly averages.
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and intermediate values are obtained by interpolation based on the assumption of piece-
wise constant instantaneous physical default intensities. Then the entity’s conditional
expected return for a five-year holding period is inferred from Equation (B.3), whenever
in addition to the EDFs, the five-year mid spread is available. Expected returns for any
other holding period are identified by assuming that conditional expected CDS returns
scale proportionally with time-to-maturity.

We emphasize that conditional expected returns inferred in this way are actually es-
timates. Their accuracy depends on EDFs being an appropriate measure of conditional
default probabilities.41 As shown in Duffie, Saita, and Wang (2007) there exist alternative
specifications of conditional default probabilities that have higher predictive power than
EDFs. However, since the increase in predictive power is only marginal and since EDFs
are readily available for reference names in our sample, we choose to base our construction
of conditional expected returns on EDFs rather than more sophisticated specifications.

Finally, we consider the situation in which an investor sells T -maturity protection with
a notional amount of N on credit index i. The index trades with fixed spread C and date
t upfront charge, UFi,t(T,C), per dollar of notional amount. In the same spirit as in the
above computation of the realized (excess) return on a CDS that trades at par, we take the
index contract’s change in net present value relative to its notional amount as its return,
i.e.,

rIDX
i,t = − (UFi,t(T,C)− UFi,t−1(T,C)) +

7

360

It
I
C −

1

I
(Li,t − Li,t−1) , (B.4)

where Li,t is the cumulative loss due to credit events among index constituents on the t-th
observation date.42 The minus sign in front of the first expression on the right hand side
is due to the convention that UFi,t(T,C) is the index contract’s net present value from a
protection buyer’s perspective. As mentioned in Section 2.3, Markit reports spread and
price quotations for credit index contracts. By convention, the date t price, Pi,t(T,C), of a
T -maturity index i that trades with fixed spread C is given by Pi,t(T,C) = 1−UFi,t(T,C).
Thus, rIDX

i,t can be readily computed from Markit credit index data. In order to compute

the return on the replicating basket, rBSK
i,t , we replace UFi,t and UFi,t−1 in the previous

display by the respective values inferred from Markit’s theoretical price quotations.

C Robustness Checks: Factor Constructions

C.1 Alternative Default Factor

EDF We first aggregate, among reference names in our sample, weekly averages of Win-
sorized 5-year EDFs into a market-wide average and then take the AR(2) residual of the
resulting default risk measure as a factor in our asset pricing model. The EDF-based
default factor has a correlation of -0.39 with our benchmark default factor (the correlation
is negative since an increase in expected defaults decreases credit index returns).

C.2 Additional Factors

BLIQ We use transaction data from the Financial Industry Regulatory Authority’s
Trade Reporting and Compliance Engine to construct the corporate bond market liq-

41For a discussion concerning the accuracy of EDFs see, e.g., Berndt, Douglas, Duffie, Ferguson, and Schranz
(2005) and the references therein.

42As in case of CDS returns, losses cumulated in Li,t are given as 1 minus the recovery value determined in
a credit event auction.

29



uidity factor. In particular, we obtain transaction data for plain vanilla fixed rate bullet
bonds issued by U.S. corporations. The data are filtered for erroneous transactions us-
ing Dick-Nielsen’s (2009) methodology and, as in Dick-Nielsen et al. (2012), transactions
with par volume below $100,000 are discarded. Bond-specific Amihud (2002) illiquidity
measures are obtained each day by averaging absolute returns of consecutive transactions
per million dollar of par volume traded. These are converted to a weekly frequency by
taking the within-week median of daily measures. Each week the market-wide measure is
obtained as the weighted average (by amount issued) of bond-specific measures. The cor-
porate bond market liquidity factor is then obtained as the negative value of the residual
of an AR(2) specification of the market-wide illiquidity measure. When converting bond-
specific Amihud (2002) illiquidity measures to a monthly rather than a weekly frequency,
the resulting corporate bond illiquidity measure has a correlation of 0.93 in levels and 0.79
in first differences with Dick-Nielsen et al.’s (2012) λ.
SLIQ In order to construct the stock market liquidity factor we obtain price, return, and
volume data for NYSE- and AMEX-traded ordinary common shares of companies incorpo-
rated in the U.S. from the Center of Research in Security Prices’ daily stock file. Individual-
stock Amihud (2002) illiquidity measures are given as weekly averages of absolute one-day
returns per million dollar of daily trading volume and each week the market-wide mea-
sure is obtained as the cross-sectional mean of Winsorized individual-stock measures. The
stock market liquidity factor is given as the negative value of the residual of an AR(2)
specification of the market-wide illiquidity measure.
LMP The leverage factor mimicking portfolio is a tradable stock portfolio that is max-
imally correlated with Adrian et al.’s (2013) non-tradable leverage factor (the seasonally
adjusted log change in the leverage ratio of an aggregate broker-dealer balance sheet). The
mimicking portfolio is composed of Fama and French (1993) portfolios (two-way sort on
size and book-to-market into six portfolios) and the momentum factor. Thus, we infer the
leverage factor mimicking portfolio as the weighted average of one-week excess returns on
the components, using the weights provided in Adrian et al. (2013). For the computation
of the components’ one-week excess returns, we use daily returns from Kenneth French’s
data library, which we compound to a weekly frequency after subtracting risk free rates.
Risk free rates for the excess return computation come from Kenneth French’s data library
as well.
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Figure 1: Credit Index Levels, Theoretical Index Levels, and Index-to-Theoretical Bases.
The figure displays daily observations of published credit index levels of the five-year on-
the-run series (thin black lines, left hand scales), theoretical index levels (thick gray lines,
left hand scales), and index-to-theoretical bases (light gray shaded areas, right hand scales)
from September 20, 2006, to February 1, 2012. Index levels and bases are in basis points
and dashed vertical lines correspond to index roll dates.
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CDS Market Illiquidity Measure
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Figure 2: CDS Market Illiquidity Measure.
The figure displays the CDS market illiquidity measure (in %). The time series consists of
1381 daily observations from September 20, 2006, to February 1, 2012. Gray vertical lines
correspond to (from left to right) the Bear Stearns near bankruptcy on March 17, 2008,
and the default of Lehman Brothers on September 15, 2008.
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Liquidity Factor
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Figure 3: Liquidity Factor.
The figure displays one-week returns (in %) on the tradable liquidity factor. The time
series consists of 279 weekly observations from October 4, 2006, to February 1, 2012. Gray
vertical lines correspond to (from left to right) the Bear Stearns near bankruptcy on March
17, 2008, and the default of Lehman Brothers on September 15, 2008.
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Rating-Based Portfolio Formation
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EDF-Based Portfolio Formation
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Figure 4: Decomposition of Expected CDS Returns.
The figure displays the decomposition of expected CDS returns (in % p.a.) into factor
risk premia at the test portfolio level. Annualized expected CDS returns are decomposed
into an intercept term, contributions of, respectively, expected illiquidity and factor risks,
and pricing errors as implied by the three-factor specification that accounts for expected
illiquidity. The horizontal axis of the respective panels display portfolio identifiers.
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Figure 5: Contribution of Liquidity Risk.
The figure displays the contributions of liquidity risk to expected CDS returns (in % p.a.)
in the benchmark specification of the model and in robustness check specifications using
alternative measures of economic importance. The upper panel displays the difference
in contributions of the B–CCCQ4 and the AAA–AAQ1 portfolios and the lower panel
displays the average contribution among the 40 portfolios. The horizontal axis of the
respective panels display specification identifiers.
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Panel A: Credit Index Levels

CDX North American
IG IG.HVOL HY HY.BB HY.B

Mean 106.48 221.62 630.94 382.25 596.33
Standard Deviation 49.66 125.87 312.64 150.45 293.36
Minimum 28.88 67.38 208.52 129.37 210.79
Maximum 279.67 682.82 1893.56 972.85 1842.83
N 1338 1342 1337 1325 1326

iTraxx Europe
Main HiVol Sr Finls Sub Finls Xover

Mean 97.60 167.11 108.69 186.70 514.04
Standard Deviation 48.39 99.05 72.26 130.75 217.81
Minimum 20.09 38.69 6.81 12.43 170.75
Maximum 215.92 550.00 353.00 607.80 1150.33
N 1357 1357 1356 1356 1356

Panel B: Index-to-Theoretical Bases

CDX North American
IG IG.HVOL HY HY.BB HY.B

Mean -4.85 -6.00 2.40 14.13 0.42
Standard Deviation 11.58 16.98 68.31 49.94 67.17
Minimum -61.12 -99.52 -451.93 -246.58 -406.75
Maximum 12.17 29.47 172.45 188.92 396.90
Corr. Abs. Value and Level 0.74 0.72 0.64 0.55 0.68

iTraxx Europe
Main HiVol Sr Finls Sub Finls Xover

Mean -3.76 -1.42 -3.84 2.34 3.61
Standard Deviation 9.05 7.03 6.88 7.48 16.48
Minimum -58.55 -39.01 -36.99 -41.87 -106.15
Maximum 13.93 20.53 10.64 33.50 49.89
Corr. Abs. Value and Level 0.53 0.64 0.35 0.34 0.53

Table 1: Descriptive Statistics.
The table displays descriptive statistics of credit index levels and index-to-theoretical bases.
Panel A provides descriptive statistics of published credit index levels of five-year contin-
uous on-the-run series. Panel B provides descriptive statistics of the corresponding index-
to-theoretical bases. Descriptive statistics are in basis points and missing observations are
neglected in their computation. Time series in Panels A and B consist of the indicated
number, N in Panel A, of daily observations from September 20, 2006, to February 1, 2012.
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Panel A: Return Descriptive Statistics

CDX North American
IG IG.HVOL HY HY.BB HY.B

Mean 4.66 8.54 13.06 11.51 13.56
Standard Deviation 21.71 36.03 73.32 95.41 71.90
Sharpe Ratio 2.44 1.34 1.54 1.55 1.94
Skewness 0.68 1.11 0.24 1.56 1.42
Kurtosis 13.54 9.10 5.96 14.54 7.95
ρ1 -0.12 0.01 -0.06 -0.05 0.02
N 273 272 264 267 265

iTraxx Europe
Main HiVol Sr Finls Sub Finls Xover

Mean 2.89 4.58 3.16 10.26 12.41
Standard Deviation 16.36 24.42 18.25 33.32 44.85
Sharpe Ratio 1.59 2.12 1.61 1.24 1.16
Skewness 0.83 -0.36 -0.29 1.64 0.69
Kurtosis 9.38 10.40 6.95 8.91 6.10
ρ1 -0.01 -0.28 -0.17 0.14 0.04
N 277 277 277 277 275

Panel B: Pairwise Correlations

CDX North American
IG IG.HVOL HY HY.BB HY.B

IG 0.39 0.17 0.13 0.14
IG.HVOL 0.08 0.04 0.08
HY 0.45 0.60
HY.BB 0.49

iTraxx Europe
Main HiVol Sr Finls Sub Finls Xover

Main 0.39 0.27 0.08 0.28
HiVol 0.05 0.02 0.11
Sr Finls 0.01 0.00
Sub Finls 0.19

Table 4: Return Descriptive Statistics.
The table displays descriptive statistics of of one-week returns on the trading strategy
underlying the construction of the tradable liquidity factor. Mean and standard deviation
are in basis points per week, the Sharpe ratio is annualized using Lo’s (2002) correction
for non-independent returns, and ρ1 denotes first-order autocorrelation. Missing observa-
tions are neglected in the computation of descriptive statistics. Time series consist of the
indicated number, N in Panel A, of weekly observations from October 4, 2006, to February
1, 2012.
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Panel A: Descriptive Statistics

MKT DEF LIQ

Mean -7.71 -3.07 5.80
Standard Deviation 303.84 42.28 14.23
Skewness -0.70 -0.42 1.46
Kurtosis 5.55 4.84 13.73
ρ1 -0.06 -0.11 0.05

Panel B: Correlations

MKT DEF LIQ

MKT 1.00 0.72 0.13
LIQ 1.00 0.07
DEF 1.00

Table 5: Descriptive Statistics Factors.
The table displays descriptive statistics for the three factors. Panel A provides descriptive
statistics of the three factors and Panel B displays the factor correlation matrix. Descrip-
tive statistics are in basis points and ρ1 denotes first-order autocorrelation. Factor time
series consist of 276 weekly observations from October 11, 2006, to February 1, 2012.
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Ê
[c
i,
t]
ζ
+

β̂
M
K
T

i
λ
M
K
T
+

β̂
D
E
F

i
λ
D
E
F
+

β̂
L
IQ

i
λ
L
IQ

+
u
i
(s
p
ec
ifi
ca
ti
on

2)
ar
e
es
ti
m
at
ed

fr
om

ex
p
ec
te
d

re
tu
rn
s,

tr
an

sa
ct
io
n

co
st
s,

an
d

fa
ct
or

lo
ad

in
gs

in
fe
rr
ed

fr
om

ti
m
e
se
ri
es

th
at

co
n
si
st

of
27
6
w
ee
k
ly

ob
se
rv
at
io
n
s
fr
om

O
ct
ob

er
11
,
20
06
,

to
F
eb

ru
ar
y
1,

20
12

(u
n
le
ss

an
ad

d
it
io
n
al

fa
ct
or

is
av
ai
la
b
le

on
ly

fo
r
p
ar
t
of

th
e
sa
m
p
le

p
er
io
d
).

S
p
ec
ifi
ca
ti
on

id
en
ti
fi
er
s
ar
e
gi
v
en

in
th
e

se
co
n
d
ro
w

of
th
e
ta
b
le
.
R
ep

or
te
d
ar
e
fa
ct
or

p
ri
ce

of
ri
sk

es
ti
m
at
es

(i
n
b
as
is

p
oi
n
ts
),

t-
st
at
is
ti
cs

b
as
ed

on
as
y
m
p
to
ti
c
ge
n
er
al
iz
ed

m
et
h
o
d

of
m
om

en
ts

st
an

d
ar
d
er
ro
rs

th
at

ac
co
u
n
t
fo
r
er
ro
r-
in
-v
ar
ia
b
le
s
p
ro
b
le
m
s
(i
n
p
ar
en
th
es
is
),

t-
st
at
is
ti
cs

b
as
ed

on
K
an

,
R
ob

ot
ti
,
an

d
S
h
an

k
en

’s
(2
01
3)

as
y
m
p
to
ti
c
st
an

d
ar
d
er
ro
rs

th
at

th
at

ac
co
u
n
t
fo
r
er
ro
r-
in
-v
ar
ia
b
le
s
p
ro
b
le
m
s
an

d
p
ot
en
ti
al

m
o
d
el

m
is
sp
ec
ifi
ca
ti
on

(i
n
sq
u
ar
e
b
ra
ck
et
s)
,

cr
os
s-
se
ct
io
n
al

R
2
s,

an
d
th
ei
r
95

p
er
ce
n
t
co
n
fi
d
en

ce
in
te
rv
al
s.

S
ta
n
d
ar
d
er
ro
rs

ar
e
h
et
er
os
ce
d
as
ti
ci
ty

an
d
au

to
co
rr
el
at
io
n
co
n
si
st
en
t
th
ro
u
gh

th
e
u
se

of
N
ew

ey
an

d
W
es
t’
s
(1
98
7)

m
et
h
o
d
w
it
h
24

la
gs
.
In

th
e
co
m
p
u
ta
ti
on

of
cr
os
s-
se
ct
io
n
al

R
2
s,
ex
p
ec
te
d
C
D
S
re
tu
rn
s
ar
e
tr
ea
te
d
as

th
e

d
ep

en
d
en
t
va
ri
ab

le
.

46



S
p
ec
.

0
1

2
3

4
5

6
7

8
9

10

B
M

C
ζ
6=

ζ̂
A
R
(2
)

C
O
S
T

E
D
F

N
O
IS
E

B
L
IQ

S
L
IQ

L
M
P

V
IX

E
x
p
ec
te
d
il
li
q
u
id
it
y

0.
95

0.
95

3.
76

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

0.
95

[0
.2
9]

[0
.2
9]

[1
.1
5]

[0
.2
9]

[0
.2
9]

[0
.2
9]

[0
.2
9]

[0
.2
9]

[0
.2
9]

[0
.2
9]

[0
.2
9]

M
ar
k
et

an
d
d
ef
au

lt
ri
sk

1.
88

1.
77

0.
00

2.
11

2.
34

2.
69

1.
35

1.
94

1.
09

1.
41

2.
61

[0
.5
7]

[0
.6
2]

[-
0.
13
]

[0
.6
1]

[0
.5
3]

[0
.8
1]

[0
.4
2]

[0
.5
9]

[0
.4
2]

[0
.4
4]

[0
.6
1]

L
iq
u
id
it
y
ri
sk

1.
89

2.
04

1.
36

1.
65

1.
24

1.
08

1.
29

1.
86

1.
48

2.
29

1.
87

[0
.5
5]

[0
.6
0]

[0
.4
0]

[0
.5
2]

[0
.5
9]

[0
.3
5]

[0
.3
9]

[0
.5
5]

[0
.4
3]

[0
.6
6]

[0
.5
7]

A
d
d
it
io
n
al

ri
sk

fa
ct
or

0.
64

-0
.0
6

1.
52

-0
.0
1

-0
.9
5

[0
.3
0]

[-
0.
01
]

[0
.2
7]

[0
.0
2]

[-
0.
06
]

T
ab

le
10
:
E
co
n
om

ic
Im

p
or
ta
n
ce

of
R
is
k
S
ou

rc
es
.

T
h
e
ta
b
le

d
is
p
la
y
s
th
e
ec
on

om
ic

im
p
or
ta
n
ce

of
ex
p
ec
te
d
il
li
q
u
id
it
y
an

d
ri
sk

fa
ct
or
s
(g
en

er
ic
al
ly

re
fe
rr
ed

to
as

ri
sk

so
u
rc
es
)
in

th
e
b
en

ch
m
ar
k

sp
ec
ifi
ca
ti
on

an
d
in

sp
ec
ifi
ca
ti
on

s
u
se
d
fo
r
th
e
ro
b
u
st
n
es
s
ch
ec
k
s.

T
o
ar
ri
v
e
at

ec
on

om
ic

im
p
or
ta
n
ce

m
ea
su
re
s,

an
n
u
al
iz
ed

ex
p
ec
te
d
C
D
S

p
or
tf
ol
io

re
tu
rn
s
ar
e
d
ec
om

p
os
ed

in
to

co
n
tr
ib
u
ti
on

s
of

th
e
se
p
ar
at
e
so
u
rc
es

of
ri
sk
.

F
or

ea
ch

so
u
rc
e
of

ri
sk
,
tw

o
al
te
rn
at
iv
e
ec
on

om
ic

im
p
or
ta
n
ce

m
ea
su
re
s
ar
e
re
p
or
te
d
:
T
h
e
d
iff
er
en

ce
in

co
n
tr
ib
u
ti
on

s
of

th
e
B
–C

C
C
Q
4
an

d
th
e
A
A
A
–A

A
Q
1
p
or
tf
ol
io
s
(r
ep

or
te
d
in

th
e
sa
m
e

ro
w

as
th
e
so
u
rc
e
of

ri
sk
)
an

d
th
e
av
er
ag
e
co
n
tr
ib
u
ti
on

am
on

g
th
e
40

te
st

p
or
tf
ol
io
s
(r
ep

or
te
d
in

sq
u
ar
e
b
ra
ck
et
s
in

th
e
fi
rs
t
ro
w

b
el
ow

th
e

so
u
rc
e
of

ri
sk
).

S
p
ec
ifi
ca
ti
on

id
en
ti
fi
er
s
ar
e
gi
v
en

in
th
e
se
co
n
d
ro
w

of
th
e
ta
b
le
.

47



Internet Appendix to

”Liquidity Risk in Credit Default Swap Markets”

Benjamin Junge Anders B. Trolle!
Content

Appendix D presents implementation details regarding the computation of ex-
pected returns, realized returns, and transactions costs. Appendix E illustrates the
computation of standard errors of factor price of risk estimates and cross-sectional R2s
under potential model misspecification. Appendix F presents the results of additional
robustness checks. Appendix G contains additional figures and tables.
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D Implementation Details

The computation of expected and realized returns on a CDS trading at par and the com-
putation of transaction costs is based on a standard CDS pricing model.

It is assumed that: (i) Credit events occur randomly and independently across refer-
ence names at the first jump times τi of a homogeneous Poisson processes with constant
intensities, (ii) interest rates evolve independent of the occurrence of credit events, and
(iii) in case a credit event occurs, creditors recover a constant fraction of the reference
obligation’s par value.

Due to assumption (ii), discount factors can be computed using well-known techniques
from the interest rate literature. We first obtain a bootstrapped zero-rate curve from
the term-structure of LIBOR rates. Assuming constant instantaneous forward rates be-
tween tenor dates, we then construct discount factors for arbitrary horizons using the
bootstrapped zero rates. In the following we denote by D(t, u) the time t discount factor
applicable to risk free cash flows occurring at time u ≥ t.

Under assumptions (i)-(iii) the present value of the protection leg of a T -maturity
single-name CDS on reference name i is given by

PV1,i(t, T,Ri) = −
T∫

t

(1−Ri)D(t, u)dSi(t, u) (D.1)

where Si(t, u) = Q(τi > u|τi > t) is the risk neutral probability of entity i’s survival up to
and including time u, conditional on not having observed a credit event before time t, and
Ri denotes the constant recovery rate. The present value of the corresponding premium
leg with spread Ci and payment dates t0 ≤ t < t1 < · · · < tJ = T is

PV2,i(t, T, Ci) = Ci · PV BPi(t, T ) =Ci ·
J∑

j=1

(
α(tj − tj−1)D(t, tj)Si(t, tj)

−
tj∫

t∨tj−1

α(u− tj−1)D(t, u)dSi(t, u)

) (D.2)

where α = 365/360 is a constant factor transforming calendar time measured in years
into an ACT/360 day-count convention and PV BPi(t, T ) denotes the present value of a
basis point.1 Note that the integrals appearing in the above equations can be computed
analytically for any sub-period of the integration domain over which instantaneous forward
rates are constant.

Given the quoted T -year par spread Ci(t, T ) for reference name i and the corresponding
recovery rate estimate, Ri, survival probabilities can be calibrated such that model implied
(clean) par spreads match the quoted ones. That is, one solves

0 = PV1,i(t, T,Ri)− (Ci(t, T ) · PV BPi,t(T )− αCi(t, T )(t− t0)), (D.3)

numerically for the survival probability Si(t, T ).
2 Due to assumption (i), survival proba-

bilities for intermediate points in time can easily be obtained by interpolation.

1The second term of Equation (D.2) is the present value of the accrual on default.
2The last term of Equation (D.3) is the spread accrual paid by the protection seller of a standardized CDS
contract at inception of trade. Throughout we assume single-name CDS contracts to be standardized apart
from their restructuring clauses. That is we assume that (i) on-the-run issues are launched on the 20th
of March, June, September, and December, (ii) on-the-run issues launched on the 20th of March (June)

1



E Standard Error Computation

Standard Errors of Factor Price of Risk Estimates

We will illustrate standard error computation for a generalK-dimensional vector of factors,
ft, and the most general case that we consider in the paper, namely, the case of a cross-
sectional regression with intercept and expected transaction cost as a characteristic. In
this case, the counterparts of Equations (1) and (2) in vector notation are

rt = α+ βft + ǫt (E.1)

and
µξ = 1Nλ0 + µcζ + βλ = Xγ (E.2)

where rt = [re1,t, . . . , r
e
N,t]

′ denotes the N -dimensional vector of realized excess returns,
α denotes the N -dimensional vector of regression intercepts, β denotes the N ×K matrix
of factor loadings, ǫt = [ǫ1,t, . . . , ǫN,t]

′ denotes the N -dimensional vector of mean zero
error terms, µξ denotes the mean of the N -dimensional vector of conditional expected
excess returns, ξt = [ξ1,t, . . . , ξN,t]

′ with ξi,t = Et[r
e
i,t+1], µc denotes the mean of the

N -dimensional vector of transaction costs, ct = [c1,t, . . . , cN,t]
′, X and γ are defined by

X = [1N , µc, β] and γ = [λ0, ζ, λ
′]′, and 1N denotes an N -dimensional vector of ones.

Note that in contrast to the standard two-pass cross-sectional regression method, there is
a distinction between expected excess returns, µξ, and the mean of realized excess returns,
µr.

Moreover, we define Yt = [f ′t , r
′

t]
′ and denote its mean and covariance matrix by

µ = [µ′f , µ
′

r]
′ and V , respectively. In what follows, we will use the following convenient

partition of V ,

V =

[
Vf V ′

rf

Vrf Vr

]
,

which gives rise to β = VrfV
−1
f . As in Kan, Robotti, and Shanken (2013), we will assume

finite fourth moments, stationarity, and ergodicity of the time series [Y ′

t , ξ
′

t, c
′

t]
′.

Under a potentially misspecified model, there is no γ such that Equation (E.2) is
satisfied and γ is chosen to minimize the sum of squared population pricing errors, e =
µξ −Xγ, i.e.,

γ = argmin
δ

(µξ −Xδ)′(µξ −Xδ) = (X ′X)−1X ′µξ.

From this expression an estimate of γ can be obtained by replacing population moments
with their sample counterparts, i.e.,

γ̂ = (X̂ ′X̂)−1X̂ ′µ̂ξ,

where X̂ = [1N , µ̂c, β̂], µ̂ξ and µ̂c are given by

µ̂ξ =
1

T

T∑

t=1

ξt and µ̂c =
1

T

T∑

t=1

ct,

[September] expire on the 20th of June (September) [December] of the year following the launch date by
the term of the contract, (iii) on-the-run issues launched on the 20th of December expire on the 20th of
March of the year following the launch date by the term of the contract plus one, (iv) spread payments
occur on the 20th of March, June, September, and December.

2



respectively, and β̂ is given by β̂ = V̂rf V̂
−1
f , with

V̂ =

[
V̂f V̂ ′

rf

V̂rf V̂r

]
=

1

T

T∑

t=1

(Yt − µ̂)(Yt − µ̂)′, where µ̂ =
1

T

T∑

t=1

Yt.

It is well known that θ̂ = [µ̂′, µ̂′ξ, µ̂
′

c, vec(V̂ )′]′ is the method of moments estimator of

θ = [µ′, µ′ξ, µ
′

c, vec(V )′]′. Under the above assumptions,3

√
T (θ̂ − θ)

d−→
T→∞

N(0, S0)

where S0 =
∑

∞

j=−∞
E[ψtψ

′

t+j ] and ψt is the moment function,

ψt = [(Yt − µ)′, (ξt − µξ)
′, (ct − µc)

′, vec((Yt − µ)(Yt − µ)′ − V )′]′.

Since γ is a smooth function of θ, an application of the delta method shows

√
T (γ̂ − γ)

d−→
T→∞

N(0, (∂γ/∂θ′)S0(∂γ/∂θ
′)′).

Using the expression for S0 from above, the asymptotic variance of γ̂, (∂γ/∂θ′)S0(∂γ/∂θ
′)′,

becomes
∑

∞

j=−∞
E[hth

′

t+j ], with ht = (∂γ/∂θ′)ψt.

Before proceeding further, let us fix the following notation: H = (X ′X)−1 and A =
HX ′. Also note that with e defined as above, γ satisfies the first-order conditions

X ′e = 0K+2 ⇔ 1′Ne = 0, µ′ce = 0, and β′e = 0K ,

where here and in what follows 0m denotes an m-dimensional vector of zeros.
In order to find an explicit expression for ht it remains to compute ∂γ/∂θ′. Using the

above partition of θ,

∂γ

∂θ′
=

[
∂γ

∂µ′
,
∂γ

∂µ′ξ
,
∂γ

∂µ′c
,

∂γ

∂ vec(V )′

]
=

[
0(K+2)×(K+N), A,

∂γ

∂µ′c
,

∂γ

∂ vec(V )′

]
,

where 0m×n denotes an m× n matrix of zeros. For the remaining expressions, we get

∂γ

∂µ′c
= {(H ⊗ e′)− (γ′ ⊗A)}∂ vec(X)

∂µ′c
, (E.3)

∂γ

∂ vec(V )′
= {(H ⊗ e′)− (γ′ ⊗A)} ∂ vec(X)

∂ vec(V )′
. (E.4)

Note that vec(X) = [1′N , µ
′

c, vec(β)
′]′. Thus,

∂ vec(X)

∂µ′c
= [0N×N , IN , 0N×N ·K ]′ = ([0, 1, 0′K ]′ ⊗ IN ),

∂ vec(X)

∂ vec(V )′
=

[
0(N+K)2×2·N ,

(
∂ vec(β)

∂ vec(V )′

)
′
]′

= ([[0K×2, V
−1
f ]′, 0(K+2)×N ]⊗ [−β, IN ]),

3As noted by Kan et al. (2013), S0 is a singular matrix. This is due to the fact that V̂ is symmetric,
i.e., it contains linearly dependent elements. One could alternatively consider the parameter vector θ̃ =
[µ′, µ′

ξ , µ′
c, vech(V )′]′, in which case the covariance matrix of the limiting normal distribution would be

non-singular.

3



where we used (∂ vec(β)/∂ vec(V )′) = ([V −1
f , 0K×N ] ⊗ [−β, IN ]) and IN denotes an N -

dimensional identity matrix. Substituting these expressions into Equations (E.3) and (E.4)
and using the first-order conditions yields

∂γ

∂µ′c
= (H([0, 1, 0′K ]′)⊗ e′)− ζA,

∂γ

∂ vec(V )′
= ([H([0K×2, V

−1
f ]′), 0(K+2)×N ]⊗ [0′K , e

′])− ([λ′V −1
f , 0′N ]⊗ [−Aβ,A]).

Again making use of the first-order conditions, ht can now be explicitly expressed as

ht =
∂γ

∂θ′
ψt =A(ξt − µξ) +H[0, e′ct, 0

′

K ]′ − ζA(ct − µc)

+H[0′2, e
′(rt − µr)(ft − µf )

′V −1
f ]′

−A(rt − µr)(ft − µf )
′V −1

f λ+Aβ(ft − µf )(ft − µf )
′V −1

f λ

=(γt − γ)− ζA(ct − µc)− {A(rt − µr)− [0′2, (ft − µf )
′]′}wt +Hzt (E.5)

where γt = Aξt, zt = [0, e′ct, ut(ft−µf )′V −1
f ]′, ut = e′(rt−µr), and wt = (ft−µf )′V −1

f λ.
Applying the Newey and West (1987) method, a heteroskedasticity and autocorrelation

consistent estimator for the asymptotic variance of γ̂ is given by

1

T

T∑

t=1

ĥtĥ
′

t +
1

T

m∑

l=1

T∑

t=l+1

(1− l

m+ 1
)(ĥtĥ

′

t−l + ĥt−lĥ
′

t)

where

ĥt = (γ̂t − γ̂)− ζ̂Â(ct − µ̂c)− {Â(rt − µ̂r)− [0′2, (ft − µ̂f )
′]′}ŵt + Ĥẑt,

and Ĥ = (X̂ ′X̂)−1, Â = ĤX̂ ′, ê = µ̂ξ − X̂γ̂, γ̂t = Âξt, ẑt = [0, ê′ct, ût(ft − µ̂f )
′V̂ −1

f ]′,

ût = ê′(rt− µ̂r), and ŵt = (ft− µ̂f)′V̂ −1
f λ̂. The finite sample approximation of the variance

of γ̂ is obtained as 1/T times the estimate of the asymptotic variance.
Based on Equation (E.5) it is straightforward to break down asymptotic variation of

γ̂ into three components. The first one, γt − γ, is variation of γ̂ in case that the model is
correctly specified and estimated using population values, i.e., there is no error associated
with the estimation of the characteristic, µc, and factor loadings, β. It should be noted
that this is the only source of variation, which is taken into account by the Fama and
MacBeth (1973) method. The second source of variation are errors-in-variables (EIV).
The second term of Equation (E.5) captures variation associated with the estimation of the
characteristic, µc, and the third term of Equation (E.5) captures variation associated with
the estimation of factor loadings. Variation from the first two sources is, e.g., accounted
for by generalized-method-of-moments-based inference.4 The third source of variation is
due to potential model misspecification and captured byHzt. Note that this term vanishes
when the model is correctly specified, i.e., e = µξ −Xγ = 0N . Thus, setting e = 0N gives

the asymptotic variance of γ̂ in a generalized method of moments estimation of β̂, µ̂c,
and γ̂. As mentioned above, this asymptotic variance takes into account EIV but neglects
potential model misspecification.

4As in Cochrane (2001), the estimation of β̂, µ̂c, and γ̂ can be formulated as a generalized method of
moments (GMM) estimation. It can be shown that in this GMM estimation the asymptotic variance of γ̂
has a representation

∑∞

j=−∞ E[h̃th̃
′
t+j ], where h̃t = (γt−γ)−ζA(ct−µc)−{A(rt−µr)− [0′2, (ft−µf )

′]′}wt.

4



In case that the intercept is restricted to zero, γ = [ζ, λ′]′, X = [µc, β] and ht is given
by

ht = (γt − γ)− ζA(ct − µc)− {A(rt − µr)− [0, (ft − µf )
′]′}wt +Hzt

where zt = [e′ct, ut(ft − µf )
′V −1

f ]′, and A, H, γt, ut, and wt are defined as above. In case

that ζ is calibrated to some fixed value ζ̂, γ = [λ0, λ
′]′, X = [1N , β], e = µξ − ζ̂µc −Xγ,

and ht is given by

ht = (γt − γ)− ζ̂A(ct − µc)− {A(rt − µr)− [0, (ft − µf )
′]′}wt +Hzt,

where zt = [0, ut(ft − µf )
′V −1

f ]′, and A, H, γt, ut, and wt are defined as above. If both

the intercept is restricted to zero and ζ is calibrated to some fixed value ζ̂, then γ = λ,
X = β, e = µξ − ζ̂µc − βλ, and ht becomes

ht = (γt − γ)− ζ̂A(ct − µc)− {A(rt − µr)− (ft − µf )}wt +Hzt

where zt = V −1
f (ft − µf )ut, and A, H, γt, ut, and wt are defined as above.

Standard Errors of the Cross-Sectional R2

The standard error computation for the cross-sectional R2 is based on the same principle
as that for the factor price of risk estimates. Again, we derive standard errors for the most
general case that we consider in the paper and we discuss less general cases at the end of
this section.

Let ρ2 denote the population value of the R2, i.e.,

ρ2 = 1− Q

Q0
= 1− e′e

e′0e0
,

where e0 = (IN−(1/N)1N1′N )µξ are population deviations of expected excess returns from
their cross-sectional average. Replacing population values in the previous display by their
sample estimates, obviously, gives the R2.

Assume that 0 < ρ2 < 1, i.e., the model is neither correctly specified nor is it mis-
specified and unable to explain any cross-sectional variation in expected returns. As in
the previous section, ρ2 is a smooth function of θ and an application of the delta method
yields √

T (R2 − ρ2)
d−→

T→∞

N(0, (∂ρ2/∂θ′)S0(∂ρ
2/∂θ′)′) (E.6)

where S0 is defined as in the previous section, (∂ρ2/∂θ′)S0(∂ρ
2/∂θ′)′ =

∑
∞

j=−∞
E[ηtηt+j ],

and ηt = (∂ρ2/∂θ′)ψt. Thus, it remains to compute ∂ρ2/∂θ′ in order to obtain an explicit
expression for ηt.

∂ρ2

∂θ′
=

[
∂ρ2

∂µ′
,
∂ρ2

∂µ′ξ
,
∂ρ2

∂µ′c
,

∂ρ2

∂ vec(V )′

]
=

[
01×(K+N),

∂ρ2

∂µ′ξ
,
∂ρ2

∂µ′c
,

∂ρ2

∂ vec(V )′

]

with

∂ρ2

∂µ′ξ
=

2

Q0
{(1− ρ2)e′0 − e′}, (E.7)

∂ρ2

∂µ′c
=

2

Q0
(γ′ ⊗ e′)

∂ vec(X)

∂µ′c
=

2ζ

Q0
e′, (E.8)

∂ρ2

∂ vec(V )′
=

2

Q0
(γ′ ⊗ e′)

∂ vec(X)

∂ vec(V )′
=

2

Q0
([λ′V −1

f , 0′N ]⊗ [0′K , e
′]), (E.9)

5



where, in order to arrive at expressions (E.7), (E.8), and (E.9), we made use of 1′Ne0 = 0
and the first-order conditions, and we replaced ∂ vec(X)/∂µ′c and ∂ vec(X)/∂ vec(V )′ by
the expressions derived in the previous section. Then,

ηt =
∂ρ2

∂θ′
ψt =

2

Q0

{
(1− ρ2)e′0(ξt − µξ)− e′(ξt − µξ) + ζe′ct + utwt

}
, (E.10)

where, as before, ut = e′(rt − µr) and wt = (ft − µf )
′V −1

f λ. As in the previous section,
the Newey and West (1987) method applied to ηt’s sample analog, η̂t, gives a consistent
estimate of the asymptotic variance of the R2.

Note that ηt = 0N both under correct model specification (i.e., e = 0N and, therefore,
ρ2 = 1) and in case of a misspecified model that does not have any explanatory power
(i.e., ζ = 0 and λ = 0K and, therefore, ρ2 = 0). Thus, in both cases the statistic in
Equation (E.6) has a degenerate limiting distribution. It can, however, be shown that in
these two cases the statistic T (R2 − ρ2) has a non-degenerate limiting distribution (see
Kan et al. (2013)).

In case that ζ is calibrated to some fixed value ζ̂, its value in Equation (E.10) has
to be replaced by ζ̂ when computing standard errors. In case that the intercept is re-
stricted to zero, then ρ2 is redefined so as to be in accordance with the R2 of a regression
without intercept. That is, the denominator of ρ2 becomes Q0 = µ′ξµξ. The correspond-
ing expressions of ηt for the standard error computation are obtained by replacing e0 in
Equation (E.10) with µξ.

F Additional Robustness Checks

Tables 1 and 2, respectively, display cross-sectional regression results and economic im-
portance for some additional robustness checks.

[Table 1 about here.]

[Table 2 about here.]

Methodology

As an additional methodological robustness check we estimate the cross-sectional regres-
sion (3) by weighted least squares (WLS), i.e., using a diagonal weighting matrix whose
inverse corresponds to a matrix that has the sample variances of first-step regression resid-
uals along its diagonal. We use the WLS estimator because it is typically more robust than
the generalized least squares estimator based on an estimated residual covariance matrix
and because, in light of the apparent heteroscedasticity of returns on the CDS portfolios,
it is likely to be more efficient than the OLS estimator.5

Specification 11 in Table 1 reports the results of a WLS estimation of the asset pricing
model. WLS point estimates do not differ by large amounts from their OLS counterparts
and, indeed, happen to be more efficient. For instance, standard errors of the factor prices
of market risk, default risk, and liquidity risk under potential model misspecification de-
crease from 7.85, 0.40, and 0.69 bps to 6.78, 0.40, and 0.54 bps, respectively. However,
these efficiency gains are insufficient to affect inference under potential model misspecifica-
tion. Because OLS and WLS factor prices of risk are similar, WLS implied contributions
to the expected return differential resemble those of the benchmark specification. As can

5Heteroscedasticity among first-step regression residuals is even more severe.
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be seen from specification 11 in Table 2, the WLS implied contribution of market and
default risk to the expected return differential is 1.70% per year, while that of liquidity
risk is an annualized 1.61%.

Alternative Liquidity Factors

The construction of our tradable liquidity factor is similar to that of Moskowitz, Ooi, and
Pedersen’s (2012) time series momentum factor, in that it aggregates signed returns. To
account for the considerable cross-sectional variation in volatilities across assets, Moskowitz
et al. (2012) scale returns by their conditional volatilities. In contrast, we account for
the cross-sectional variation in volatilities by scaling credit index returns by past index
levels. As an alternative, we construct a tradable liquidity factor from signed returns
on the individual arbitrage strategies, rIDX

i,t − rBSK
i,t , that are scaled by their conditional

volatilities. In this case, the liquidity factor is given by

LIQMOP
t =

1

nt

nt∑

i=1

sign (Bi,t−1)
40%

σi,t−1

(
rIDX
i,t − rBSK

i,t

)
,

where σ2i,t is an estimate of annualized conditional variance of rIDX
i,t − rBSK

i,t , which is ob-
tained from daily returns as in Equation (1) of Moskowitz et al. (2012). Because we use
the first six-month period to estimate the conditional volatility for the computation of
the alternative liquidity factor’s first observation, its time series consists of 252 weekly
observations from March 28, 2007, to February 1, 2012. The alternative liquidity factor
has a correlation of 0.87 with the benchmark liquidity factor indicating that our index-
level-based weighting scheme effectively mimics the approach of Moskowitz et al. (2012).

Despite a large number of test portfolios that do not exhibit significant exposure to
the alternative liquidity factor in first-step regressions, the factor price of liquidity risk
in the second-step cross-sectional regression is statistically significant (see specification 12
in Table 1). In comparison to our benchmark specification, the contribution of expected
illiquidity to the expected return differential increases slightly to 1.01% per year, while
that of liquidity risk decreases to 1.21% per year (see specification 12 in Table 2).6

Alternative Default Factor

Results of a robustness check with an alternative default factor are reported as specifica-
tion 13 in Tables 1 and 2. This default factor is given by the excess return on the Bank
of America Merrill Lynch Global Corporate Index. Excess returns on this corporate bond
index are obtained from Bloomberg and computed with respect to a basket of government
bonds. The correlation between the alternative default factor and the benchmark default
factor is 0.56.

First-step factor loadings (unreported) and the factor price of default risk (in Table 1)
are strongly statistical significant for the alternative default factor. The contribution of
market and default risk to the expected return differential in Table 2 is essentially the
same as in our benchmark specification, while that of liquidity risk decreases slightly to
1.65% per year.

6Due to the fact that we consider expected returns and expected transaction costs measured over the shorter
sample period, the contribution of expected illiquidity to the expected return differential changes in this
robustness check as well.
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Additional Factors

Stock market liquidity factor As an alternative to the stock market liquidity factor
based on the Amihud (2002) illiquidity measure, we construct a factor based on the Pástor
and Stambaugh (2003) liquidity measure. The data used for the construction of the factor
are described in Appendix C. To obtain individual-stock Pástor and Stambaugh (2003)
liquidity measures at a weekly frequency, we estimate regression (1) in Pástor and Stam-
baugh (2003) for each stock with observations within the last 22 trading day window. The
construction of the market-wide liquidity measure proceeds as in Pástor and Stambaugh
(2003) with the exception that we do not scale the market-wide liquidity measure by the
lagged dollar value of the stocks included in its construction. Having constructed the
market-wide measure, we run regression (7) in Pástor and Stambaugh (2003) and obtain
the liquidity factor as this regression’s residual.

Only a few test portfolios have a significant loading with respect to this stock-market
liquidity factor at the five percent level. The estimated factor price of risk is significant
under correct model specification but counterintuitively negative (see specification 14 in
Tables 1). Consequently, the contribution of stock market liquidity risk to the expected
return differential in Table 2 is negative at -0.13% per year. In comparison, CDS market
liquidity risk contributes 2.12% per annum.

Volatility and jump factors As mentioned in the paper, volatility risk has been shown
to be priced in stock and corporate bond returns and a recent study by Cremers, Halling,
and Weinbaum (2013) also finds evidence for priced jump risk in stock returns. We, there-
fore, check whether such effects exist for CDSs as well and if taking them into account has
an impact on liquidity risk effects. In particular, we separately include returns on Cremers
et al.’s (2013) MNGN and MNVN index option portfolios as volatility and jump factors in
the asset pricing model (see specifications 15 and 16 in Tables 1 and 2). Only a few test
portfolios exhibit significant exposure to the volatility factor and despite the significant
factor price of risk estimate under correct model specification, there is no contribution of
volatility risk to the expected return differential. Some of the portfolios load significantly
on the jump factor and in line with Cremers et al. (2013) we find a significantly negative
factor price of risk under correct model specification. Nevertheless, the contribution of
jump risk to the expected return differential is counterintuitively positive at 0.69% per
year.

G Additional Figures and Tables

Figure 1 displays index-to-theoretical bases and published and theoretical on-the-run index
levels for the sub-indices of the CDX North American and iTraxx Europe families.

[Figure 1 about here.]

Figure 2 depicts monthly time series of the explanatory variables of the time series
properties regressions against the monthly time series of the CDS market illiquidity mea-
sure.

[Figure 2 about here.]

Table 3 summarizes index rules for the main indices of the CDX North American and
iTraxx Europe credit index families.
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[Table 3 about here.]

Table 4 displays descriptive statistics for the portfolios formed by first sorting CDS
contracts according to five-year EDFs and then according to bid-ask spreads.

[Table 4 about here.]

Table 5 displays results for cross-sectional regressions of expected returns on one-factor
model loadings.

[Table 5 about here.]
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Figure 1: Credit Index Levels, Theoretical Index Levels, and Index-to-Theoretical Bases.
The figure displays daily observations of published credit index levels of the five-year on-
the-run series (thin black lines, left hand scales), theoretical index levels (thick gray lines,
left hand scales), and index-to-theoretical bases (light gray shaded areas, right hand scales)
from September 20, 2006, to February 1, 2012. Index levels and bases are in basis points
and dashed vertical lines correspond to index roll dates.
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Figure 2: Explanatory Variables vs. CDS Market Illiquidity Measure.
The figure displays monthly observations of the explanatory variables in the time series
properties regressions (thin black lines, left hand scales) and the CDS market illiquidity
measure (thick gray lines, right hand scales). The explanatory variables are: The average
bid-ask spread of single-name CDSs (Bid-Ask), the average absolute spread change per
quote contributed across single-name CDSs (ILLIQ-1), the weighted average (by number of
index constituents) of absolute spread changes per number of quote contributors across five-
year on-the-run credit indices (ILLIQ-2), the spread between ten-year Resolution Funding
Corporation and Treasury constant maturity yields (RefCorp), the Hu, Pan, and Wang
(2013) Noise measure (Noise), Dick-Nielsen, Feldhütter, and Lando’s (2012) λ corporate
bond illiquidity measure, the spread between three-month LIBOR and OIS rates (LIB-
OIS), the spread between three-month Agency MBS and Treasury general collateral repo
rates (Repo), the level of the Hedge Fund Research Global Index (HFRX), the yield spread
between Baa- and Aaa-rated bonds (Default), the VIX index (VIX), and the average CDS-
bond basis across U.S. investment grade bonds (CDS-Bond). Bid-Ask, ILLIQ-1, ILLIQ-2,
and Noise are in basis points. RefCorp, LIB-OIS, Repo, Default, VIX, CDS-Bond, and
the CDS market illiquidity measure are in %. λ and HFRX are in index points. The time
series consist of 63 monthly observations from October 2006 to December 2011.11
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