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ABSTRACT

We use the 2007 asset-backed commercial paper (ABCP) crisis as a laboratory to study
the determinants of debt runs. Our model features dilution risk: maturing short-term lenders
demand higher yields in compensation for being diluted by future lenders, making runs more
likely. The model explains the observed ten-fold increase in yield spreads leading to runs and
the positive relation between yield spreads and future runs. Results from structural estimation
show that runs are very sensitive to leverage, asset values, and asset liquidity, but less sensitive
to the degree of maturity mismatch, the strength of credit guarantees, and asset volatility.
Allowing lenders to coordinate can make runs certain and immediate.
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Debt runs played a central role in the �nancial crisis of 2007-2008. Investors ran on asset-backed

commercial paper (ABCP) starting in July 2007, on repo starting in September 2007, and on money

market mutual funds in September 2008. Investors also ran on large banks such as Northern Rock

(September 2007) and Bear Stearns (March 2008).1

These events have reignited the debate about what causes runs and how we can prevent them.

We contribute to this debate by measuring the sensitivity of runs to several contributing factors,

including coordination failures, maturity mismatch, leverage, asset volatility and liquidity, and the

strength of guarantees. The results help answer four questions that are vital to policy makers,

regulators, bankers, and investors: How fragile are �nancial intermediaries? How can we design

�nancial intermediaries ex ante to control the risk of future runs? What are the warning signs that

a run is imminent? Finally, which interventions best prevent runs ex post once conditions have

started deteriorating?

We address these questions by estimating a structural model of debt runs using data from

the 2007 ABCP crisis. ABCP issuers, commonly referred to as conduits, are o¤-balance sheet

investment vehicles that banks structure to invest in pools of medium- and long-term assets such

as trade receivables and mortgage-backed securities.2 A conduit �nances these investments by

issuing short-term ABCP to dispersed creditors and rolling it over until the conduit chooses to stop

investing. The bank sponsoring the conduit provides some form of guarantee in the event that the

conduit can no longer roll over its debt.

The amount of ABCP outstanding in the U.S. contracted by roughly $400 billion (one third)

between July and December of 2007. Several authors have interpreted this event as a run on debt.3

1Brunnermeier (2008) and Krishnamurthy (2010) summarize the events of 2007-2008. We discuss the literature
on ABCP below. Gorton and Metrick (2012) and Krishnamurthy, Nagel, and Orlov (2012) empirically investigate
the run on repo. Martin, Skeie, and Von Thadden (2012) provide a model of repo runs. Kacperczyk and Schnabl
(2012) examine the run on money market funds.

2One prevalent view is that ABCP conduits were essentially a way for sponsoring banks to take on systemic risk
beyond regulations, without transferring the risk to ABCP investors. See Acharya and Richardson (2009), Acharya
and Schnabl (2009), Acharya, Schnabl and Suarez (2010), Brunnermeier (2009) and Shin (2009).

3See, for instance, Covitz, Liang, and Suarez (2012), Acharya, Schnabl, and Suarez (2012), Gorton and Metrick
(2012), and Krishnamurthy, Nagel, and Orlov (2012).
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In a debt run, creditors refuse to roll over their debt if they fear that other creditors will not roll

over, in some cases even if the borrower is solvent. In the case of ABCP, roughly 40% of conduits

had stopped rolling over maturing debt by the end of 2007.

ABCP provides a useful laboratory to study �nancial fragility for four reasons. First, since

ABCP conduits perform maturity transformation, they are representative of many other �nancial

intermediaries. Second, the simple balance sheet and operating structure of ABCP conduits lend

themselves to modelling. Third, we have detailed data on the yield, maturity, size, and issuer�s

identity for all U.S. ABCP transactions in 2007. Because yields adjust at each maturity date, their

time series measures the conduit�s health continuously and can potentially be an important lead

indicator of runs. Finally, as Krishnamurthy, Nagel, and Orlov (2012) argue, the run on ABCP was

important in itself:

�[These] data suggest that ABCP played a more signi�cant role than the repo market

in supporting both the expansion and contraction of the shadow banking sector. The

repo market is signi�cant, but it is a sideshow compared to the happenings in ABCP.�

In fact, runs on ABCPmay have had a broad e¤ect on �nancial intermediation through two channels.

First, runs impaired ABCP conduits�ability to fund assets such as trade receivables or student loan

receivables. Second, the runs on ABCP conduits forced their sponsoring banks to take troubled

assets like mortgage securities back onto their own books, which impaired lending to non�nancial

�rms and ultimately harmed economic activity (Irani (2011)).

Our model of ABCP conduits is based on He and Xiong (2012). A conduit �nances a long-term

asset using short-term, dispersed debt with overlapping maturities. Creditors track the asset�s

value and optimally run as soon as the conduit�s leverage crosses above an endogenous threshold.

A creditor�s decision to run depends on changing expectations that other creditors will run. We

extend He and Xiong�s (2012) model so that debt yields are not �xed but instead vary endogenously

over time, so as to make lenders indi¤erent between rolling over or not. This extension is necessary:
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we show empirically that yields on ABCP forecast runs, and yields increase exponentially leading

up to runs. To have any chance of �tting these data, the model must make predictions about the

time series of yields.

The model�s parameters include the debt�s maturity; the perceived strength of the sponsor�s

guarantee; and the asset�s volatility, maturity, and liquidation discount in default. We observe

some of these parameters directly in the data, and we estimate others using the simulated method

of moments (SMM).

We �nd three main results. First, we show that runs are very sensitive to leverage and asset

liquidity, but are less sensitive to the degree of maturity mismatch, asset volatility, and perceived

guarantee strength. We measure these sensitivities by comparing simulated run probabilities be-

tween our estimated model and a counterfactual model with altered parameter values. We measure

these sensitivities in both the early and late stages of a simulated crisis. In the late stages, increas-

ing the asset�s liquidation recovery rate by 1% (from 92.0% to 92.9%), while holding all else equal,

lowers the probability of a run within three months from 70% to 39%. Decreasing the conduit�s

leverage by 1% (from 91.4% to 90.4%) has an almost identical impact. In contrast, reducing

the run probability by the same amount would require either reducing asset volatility by 40%, in-

creasing average debt maturity by 190%, reducing average asset maturity by 98%, or increasing the

guarantee�s expected lifespan by 413%.

We also examine the sensitivity of runs to coordination failures. Surprisingly, the model predicts

that runs become certain and immediate if we allow lenders to coordinate, as long as the guarantee

is as strong as our estimates imply. A strong guarantee incentivizes creditors to gradually draw

down their debt with little risk of default.

These results shed light on how regulators and bankers can manage the risk of runs, both when

forming new conduits and during a crisis. For example, crisis management policies with modest

e¤ects on asset liquidity (e.g., purchasing distressed assets) or conduit leverage (e.g., injecting

equity) can have substantial e¤ects on the likelihood of runs. High ABCP yields, which result

3



from deteriorating fundamentals, are a warning sign that a run is imminent. The model provides

a quantitative mapping between these warning signs and the likelihood of runs. Interventions that

help lenders coordinate can hasten rather than delay conduits�demise. Of course, we do not address

the feasibility or the cost of policy interventions, nor do we analyze how changing one fundamental

(e.g., liquidity) may a¤ect another (e.g., debt maturity).

The second main result is that the model can �t several features of the 2007 ABCP crisis. For

conduits o¤ering weak guarantees to investors (�SIV�and �Extendible Notes�), the model comes

quite close to �tting the magnitude and timing of the dramatic run-up in yields before runs, the

overall level of ABCP yield volatility and its relation to yield levels, and the relatively high likelihood

that conduits recover from a run. In both simulated and actual data, the current yield level helps

forecast whether a run will occur. The model�s main shortcoming is that, for conduits o¤ering

strong guarantees (�Full Credit�or �Full liquidity�), it underpredicts runs when yields are high.

Our third result is theoretical. We show that introducing time-varying yields into the model

typically makes runs more likely, relative to He and Xiong�s (2012) model with constant, exogenous

yields. Using He and Xiong�s (2012) calibrated parameter values, we �nd that runs are 1.3 to 51

times more likely in our model than theirs. The reason, as He and Xiong (2012) conjecture, is

that the conduit must o¤er high yields to induce rollover when conditions deteriorate. These high

yields dilute all outstanding debt that matures later. Creditors preemptively demand higher yields

in compensation for the risk of future dilution. These higher yields in turn make leverage build

up faster, which makes runs more likely. This new risk, which we call �dilution risk,�can be an

important driver of yields and runs.

Several papers measure the determinants of runs using a reduced-form approach. Covitz, Liang,

and Suarez (2012) show that runs on ABCP conduits are negatively related to the strength of their

guarantees. Calomiris and Mason (1997, 2003) show that bank runs during the Great Depression

are correlated with measures of bank solvency and shocks to the aggregate, regional, and local

economies. Using data on an Indian bank, Iyer and Puri (2011) show that runs are positively
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related to weaker deposit insurance, a shorter or shallower relationship with the bank, and runs by

one�s peers. Chen, Goldstein, and Jiang (2010) provide evidence of strategic complementarities in

mutual funds.

We depart from the existing empirical literature by taking a structural estimation approach. The

structural approach complements the reduced-form approach by overcoming certain data limitations

and by imposing di¤erent identifying assumptions. The reduced-form approach requires data

on the determinants of runs, many of which are di¢ cult to obtain in the ABCP setting.4 We

overcome this limitation by structurally estimating these quantities. The reduced-form approach

also requires a dataset with su¢ cient variation in the determinants of runs. Finding variation

is potentially a challenge in the ABCP setting because conduits resemble each other on many

dimensions. The structural approach requires no heterogeneity in these determinants, as we use

counterfactual analysis to measure the sensitivity of runs to their various determinants. Both

approaches impose strong identifying assumptions. The reduced-form approach assumes we have

exogenous variation in the determinants of runs, which is di¢ cult to satisfy. The structural

approach assumes that the model is correct, but it allows joint tests of the theory�s quantitative

predictions. This paper therefore takes a step toward providing a quantitative model of �nancial

fragility, which is crucial for guiding the management and regulation of �nancial intermediaries.

The paper is structured as follows. Section I describes the model�s assumptions and solution.

Section II discusses its predictions regarding dilution risk and the likelihood of runs. Section III

describes the data, identi�cation, and SMM estimation. Section IV assesses model �t and describes

our parameter estimates. Section VI uses the estimated model to explore the determinants of runs,

Section VI discusses policy implications, and Section VII concludes.

4Data on conduit leverage and asset holdings are not publicly available. Even if asset holdings were known,
measuring asset liquidity is di¢ cult, especially for ABCP asset classes like trade receivables. Price data on trade
receivables and other important asset classes are not available. Further, while we have data on credit guarantees�
types, we cannot measure their perceived strength.
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I. The model

We extend the model of He and Xiong (2012) by allowing yields on short-term debt to adjust

over time in response to changes in fundamentals. All assumptions below are shared with He and

Xiong (2012) unless otherwise noted. The Appendix describes the solution.

The model includes several features of ABCP conduits. The conduit �nances a long-term asset

using short-term, dispersed debt with overlapping maturities. The conduit must roll over this debt

several times before the conduit ends, so the conduit faces rollover risk. The conduit�s sponsor

provides imperfect credit support if the conduit cannot roll over its paper.

A. Assumptions

A.1. Asset

At time zero an ABCP conduit purchases a long-horizon asset. This asset represents the

portfolio of assets a conduit typically buys. For the overall ABCP industry in 2007, the largest

assets classes were trade receivables (14%), credit cards (12%), auto loans (11%), �securities�(11%),

commercial loans (10%), and mortgage-related assets (9%).5 The conduit reinvests any interim cash

�ows from the asset. For example, the conduit may buy new trade receivables using the payouts

from maturing receivables. The conduit therefore makes no net interim payouts to investors.6 The

asset produces a single net payout when the conduit matures, meaning the conduit winds down

operations. The conduit matures randomly and independently at a time �� that arrives according

to a Poisson process with intensity �; so the conduit�s expected time until maturity is always 1=�:

5Data are from �The ABC�s of ABCP,�an unpublished document from Societe Generale. Reported portfolio
weights are measured on August 31, 2007. The ambiguous �securities� category may include mortgage-related
securities.

6In He and Xiong (2012), the asset pays a �xed dividend, which the conduit uses to pay a coupon on the bond.
Our model assumes zero-coupon debt, since commercial paper is a discount security that pays face value at maturity
with no interim coupons.
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At maturity, the asset produces a payout y�� ; where y follows a geometric Brownian motion

dyt
yt
= �dt+ �dZt: (1)

Agents observe yt at all times. All agents in the economy are risk neutral and have discount rate

�; so the asset�s value at time t is

F (yt) � Et
h
e�(���t)�y��

i
=

�

�+ �� �yt: (2)

A.2. Debt �nancing

The conduit �nances the asset by initially borrowing $1 from a continuum of short-term creditors.

Consistent with industry practice, the conduit also issues equity to its sponsor. The conduit�s debt

is zero-coupon and has endogenous face value Rt per dollar loaned at date t: In contrast, debt

contracts in He and Xiong (2012) have face value normalized to one and o¤er exogenous interest

rate r: Each debt contract in our model matures randomly and independently with probability

�dt in the interval [t; t+ dt] ; implying that a debt contract�s average remaining maturity always

equals 1=�: This modeling device, which follows Calvo (1983), Blanchard (1985), and Leland (1998),

re�ects that ABCP conduits deliberately spread their debt maturities over time to reduce funding

liquidity risk. These assumptions capture an important feature of the ABCP market, which is that

before a given lender�s debt matures, other lenders�debt will mature and potentially fail to roll

over. Our assumptions imply that the conduit rolls over a fraction �dt of its debt every instant,

and the total face value of debt, Dt; �uctuates over time according to

dDt = �Dt (Rt � 1) dt: (3)

A.3. Runs, liquidation, and the sponsor�s guarantee

As payment for a maturing loan, lenders accept a new loan with a potentially di¤erent face

value. If lenders choose not to roll over, we say that they run. We assume lenders roll over if they
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are indi¤erent between rolling over and running. If lenders run and the conduit cannot raise funds

to pay o¤ maturing lenders, then the conduit defaults. In default, the conduit sells the asset at a

fraction � of its fair market price, which yields L(yt) � �F (yt) :

Parameter � measures the asset�s liquidity in the run state.7 Equivalently, � is the asset�s

recovery rate in default. Consistent with industry practice, the conduit distributes bankruptcy

proceeds L (yt) to outstanding creditors pro rata, i.e., in proportion to their face value.

An ABCP conduit�s sponsor provides a guarantee, which is typically a line of credit the conduit

can use if it is unable to issue new paper. Section III.A describes the four types of guarantee in use

in 2007. We follow He and Xiong (2012) by modeling guarantees as an imperfect credit line from

the sponsor. If the conduit experiences a run, it pays o¤ maturing paper by borrowing from the

sponsor at the prevailing rollover yield and maturity. The credit line therefore allows the conduit

to potentially survive a run long enough for the conduit to recover and begin issuing paper again.

We assume the credit line fails independently, causing default, each instant with probability ��dt:

Once a run starts, the credit line is expected to last for 1= (��) years, so conduits with higher values

of � have weaker guarantees.

B. ABCP pricing

We typically work with yield spreads, denoted rt (in units of fraction per year); which we can

compute from face values Rt (in units of dollars) using8

rt = (Rt � 1)� (�+ �)� �: (4)

7Note that we do not assume that asset liquidity is constant. Instead, we assume that the creditors�expected
asset liquidation value in the run state, i.e., if the whole asset is sold to pay o¤ running creditors, is constant.

8The yield spread rt is the interest rate (in excess of the risk-free rate, �) that delivers the same value as a zero-
coupon bond with face value Rt; under the assumption that both bonds are paid back in full at � = min (� �; ��) :
Equation (4) follows from the condition

Et

�Z �

t

e��(s�t)rtds+ e
��(��t)

�
= Et

n
e��(��t)Rt

o
:
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Unlike in He and Xiong (2012), debt is priced in a competitive market so that creditors exactly

break even. Speci�cally, the conduit sets its rollover yield spread rt so that if creditors loan the

conduit $1 at time t, they receive a debt contract worth $1. Intuitively, if times are bad, the

conduit must issue paper at a high yield spread rt to make creditors break even. If times are good,

the new paper is almost risk free, and the new rollover yield will be close to the risk-free rate.

We assume the conduit cannot or will not issue debt with a yield spread above an exogenous

cap, r. This is an important assumption, which, as we show later, implies that creditors run exactly

when the spread hits its cap. There are a several rationales for assuming yield spreads cannot go

to in�nity as conditions worsen.

One rationale relates to institutional constraints. The main investors in ABCP are money

market funds, which are required to invest mainly in assets with very high ratings (A-1 by S&P or

P-1 by Moody�s).9 As an ABCP conduit�s health declines and its rollover yields rise, eventually the

conduit will lose its A-1/P-1 rating and its creditors will be unable to roll over its paper. E¤ectively,

the conduit will be unable to roll over paper once yield spreads reach a certain level, i.e., a cap.

Credit rationing, as in Stiglitz and Weiss (1981), provides another rationale for capping yields.

Once yield spreads exceed some level, only the conduits with very risky assets will be willing to roll

over their paper. Because of this adverse selection problem, creditors will refuse to accept yield

spreads above this cap.

In these �rst two rationales, it is creditors who walk away from the conduit in a run. There are

two other rationales in which the sponsor walks away. In the �rst, if conditions worsen enough,

rollover yields become so high that the ABCP conduit�s equity is almost wiped out. The sponsor

then has little incentive to keep operating the conduit, especially if the sponsor has explicitly o¤ered

a weak guarantee. As in Leland (1994), the sponsors can choose ex ante an equity lower bound,

9At the time of the 2007 crisis, rule 2a-7 under the Investment Company Act limited the portfolio share that
registered money market mutual funds can invest in eligible securities not rated A1/P1 to 5% of the fund portfolio
(these securities are typically rated at least A2/P2).
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or, indirectly, a yield cap, at which to optimally default.10

The cap on yield spreads may also re�ect the sponsor�s borrowing costs. The sponsor arguably

compares the cost of rolling over paper at the market rate versus triggering the guarantee, paying o¤

maturing lenders by borrowing at the sponsor�s own rate, and bringing the asset onto the sponsor�s

balance sheet. For example, a highly levered sponsor may let rollover yields go to a higher yield

level before triggering the guarantee, because the sponsor�s own borrowing costs are higher.

A �nal rationale is that without a cap on yields, the model predicts no runs. Speci�cally, the

predicted probability of a run goes to zero as r gets large (Figure 7). Intuitively, no matter how

bad conditions become, the asset�s value is always strictly positive. Since each maturing lender

is in�nitesimally small, we can always �nd a very large but �nite yield that e¤ectively transfers

the whole asset to the maturing lender, thereby inducing her to roll over. Formally, the yield cap

eliminates the Ponzi feature of the in�nitely repeated game of dilution.11 We suspect that a yield

cap would arise endogenously in a more realistic model with non-in�nitesimal lenders.

Since we do not know which of these rationales for a yield cap binds in the data, we treat r as a

parameter to estimate. This estimate measures the minimum of the rationales�various caps. Future

research could establish which cap binds empirically. The answer would help explain whether runs

were the result of conduits regarding short-term funding as too expensive or of creditors considering

ABCP too risky.

C. Discussion

Our model is one of fundamental-driven panics (e.g., Goldstein (2010)). The only variable that

changes exogenously over time is the asset�s fundamental value. The model therefore assumes that

10Similar models to ours that incoporate an endogenous default policy in the spirit of Leland (1994) are Hugonnier,
Malamud and Morellec (2011), Décamps and Villeneuve (2007), and He and Milbradt (2011). These models , however,
do not include the possibility of a binding credit supply constraint, e.g., a credit ratings requirement.
11A related issue is present in Hege and Mella-Barral (2005), where creditors dilute each other repeatedly after

being o¤ered an alternating sequence of debt renegotiation options. The number of options is �nite, so that the last
debt renegotiation option is well de�ned (and given) and the problem can be solved by backward induction.
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runs are triggered by a drop in fundamental asset value rather than by, for example, an increase in

asset volatility. Asset volatility and other model parameters do a¤ect the likelihood of runs, as we

discuss later, but the model assumes these parameters remain constant over time. The model still

includes an element of �panic,� in the sense that lenders run because they fear other lenders will

do the same.

The assumption that runs are triggered by a drop in asset value is strongly supported by Figure 1,

which plots price indexes in 2007 for ABCP conduits�main asset classes (solid lines), and also plots

the fraction of ABCP conduits experiencing a run as de�ned in Section III.A (dashed line). The

�gure shows that the ABX index of mortgage-related securities dropped by roughly 20 percentage

points in the months before runs intensi�ed. Mortgage-related assets made up 9% of the ABCP

industry portfolio in 2007.

<INSERT FIGURE 1 HERE>

We cannot rule out that some of the model�s parameters changed suddenly in mid 2007. However,

as we shall see below, the model �ts the data remarkably well without these additional assumptions.

Moreover, our parameter estimates are forward-looking: we recover the parameter values consistent

with yields and run intensities well into the crisis.

Note that runs in the model are not caused by idiosyncratic liquidity shocks to creditors. If

one individual creditor fails to roll over due to a liquidity shock, another creditor will take up the

contract at the break-even yield, preventing a run. In Section III.A, we de�ne runs as lack of rollover

for a conduit instead of a single creditor�s idiosyncratic withdrawal. In Section III.A we explain how

our empirical de�nition of runs clearly distinguishes lack of rollover due to worsening fundamentals

from a creditor�s idiosyncratic withdrawal. Moreover, the data support our assumption that runs

on ABCP in 2007 did not result from systemic liquidity shocks to creditors: runs on ABCP preceded

runs on money market funds, ABCP conduits�main investors.

Finally, we assume a conduit never liquidates just a part of its asset to pay running creditors. It
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is doubtful that conduits would use partial liquidations. The Internet Appendix shows that partial

asset sales, far from improving a conduit�s health, actually guarantee that the run will continue.12

The reason is that a partial asset sale automatically increases the conduit�s leverage. Also, since

ABCP assets like trade receivables are very illiquid, it seems plausible that conduits would wait as

long as possible before liquidating them.

D. Model solution and examples

The Appendix contains details on the model�s solution, including a full description of the value

function, state variable dynamics, and numerical methods. This subsection describes in nontech-

nical terms the key features of the solution.

An in�nitesimally small lender knows she will face one of three outcomes, depending on which of

the following events occurs �rst. The �rst possible outcome is the asset matures �rst, delivering a

total payout of min(Dt; yt) to lenders as a group. In the second, the loan matures �rst, allowing the

lender to choose between rolling over and running. The third, least desirable outcome is that other

lenders run on the conduit, the guarantee fails, and the conduit defaults before the loan matures,

which delivers min (Dt; �F (yt)) to the lenders as a group. Therefore, when choosing whether to

roll over, each lender must rationally anticipate other lenders�rollover choices.

As in He and Xiong (2012), we solve for the monotone equilibrium where lenders roll over their

debt as long as the state variable doesn�t drop below a threshold. We show that our model�s only

state variable is inverse leverage (xt ), which equals the ratio of the asset�s fundamental value (yt)

to the conduit�s total debt (Dt). In equilibrium, each maturing creditor compares the conduit�s

current inverse leverage xt to an endogenous, constant threshold, x�; and the creditor run as soon

as xt < x�:

One important implication is that rollover yields depend on leverage (Dt=yt) but not on yt or

12We have submitted the Internet Appendix as a separate document. Eventually this document can live on the
authors�or journal�s website.
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Dt individually, which is intuitive. More importantly, in equilibrium creditors will stop rolling over

exactly when yield spreads reach the cap, r; since they cannot be compensated for additional default

risk. As a consequence, the run threshold x� will be the assets-to-debt ratio where yields �rst hit

their cap. Like He and Xiong (2012), we �nd that creditors start running before a conduit becomes

insolvent. The reason is that each creditor�s rollover decision imposes an externality on the other

creditors.

Figure 2 illustrates how leverage and yields adjust over time. The top panel plots the time series

of inverse leverage (xt) for two simulated conduits with the same initial fundamentals but di¤erent

outcomes. The �at dotted line represents x�; the predicted run threshold. The dashed line depicts

a conduit whose asset�s value remains high enough so that the conduit never experiences a run,

and all lenders are paid in full. The solid line represents a conduit that experiences two runs when

its inverse leverage falls below x�. During the �rst run, the guarantee survives long enough for

the conduit to repay all running lenders and begin issuing paper again. The guarantee fails in the

second run, causing the conduit to default and liquidate assets, imposing losses on some lenders.

<INSERT FIGURE 2 HERE>

The bottom panel of Figure 2 shows the corresponding rollover yields for those same simulated

conduits. Since the conduit represented by the dashed line remains healthy, its yield remains at

or near the risk-free rate, � = 5%. The yields of the conduit represented by the solid line spike up

and become more volatile as a run becomes imminent, eventually reaching their cap when the run

begins. As soon as this conduit recovers from its �rst run, yields drop below the cap.

II. Flexible pricing, dilution risk, and the likelihood of runs

Allowing yields to adjust over time signi�cantly changes the likelihood of runs, relative to the

He and Xiong�s (2012) model with constant yields. We compare simulated run probabilities in our

model to those in He and Xiong (2012, henceforth HX). To make the models comparable, we use
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the same parameter values where possible, we make the asset�s initial market value the same in

both models,13 and we assume conduits in both models initially borrow $1. HX�s lenders receive

a face value of $1 with a �xed, exogenous yield, so in return for their initial $1 investment, lenders

receive debt worth more than $1. Yields in our model are set so that lenders exactly break even,

so in return for their initial $1 investment, lenders receive debt worth $1.

We compare the two models in Table I. We show results using HX�s calibrated parameter

values (left-hand columns) and our estimated parameter values (right-hand columns). We repeat

the analysis using several values of r (our model�s cap on yield spreads) and HX�s exogenous yield.14

<INSERT TABLE I HERE>

Panel A shows that runs that are 1.31 to 51 times more likely in our model than in HX�s when

we use HX�s calibrated parameter values. Runs are especially more likely in our model if HX�s

exogenous yield is higher, because HX�s investors are less willing to run on debt that o¤ers a higher

interest rate. Runs are not always more likely in our model, however. With estimated parameter

values, we see that when HX�s �xed yield is su¢ ciently low, our model produces 35% fewer runs

than HX�s model.

Intuitively, �exible yields in�uence runs through three channels. The �rst two channels make

runs less likely in our model compared to HX. First, conduits in our model can initially borrow

at low interest rates, allowing them to start with lower leverage (Panel C in Table I). Second,

13The asset pays interim cash �ows at rate r in He and Xiong (2012), but our model has no interim cash �ows.
Setting the asset�s value equal in the two models requires choosing initial fundamental y0 by solving

FHX
�
yHXo

�
= F (y0)

r

�+ �
+ yHX0

�

�+ �� � = y0
�

�+ �� �;

where y0 (yHX0 ) is the asset�s initial fundamental value in our (HX�s) model. In the �rst analysis we set yHXo = 2:1.
In the second analysis we set yHX0 = 0:82.
14In the �rst analysis, HX�s �xed yield is centered at its calibrated value, 7%. We choose values of r much higher

than HX�s �xed yield, because higher values of r make runs less likely in our model, all else equal. We �nd that
despite these high r values, runs are still more likely in our model than in HX. In the right-hand columns, r is at its
estimated value, and we choose values of HX�s �xed yield that are within the range of observed yields.
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being able to raise yields in bad times helps convince lenders to roll over. This relative advantage

is especially large when HX�s �xed yield is very low, which explains why our model produces fewer

runs than HX only when HX�s �xed yield is very low (e.g., 10 basis points (bp) above the risk-free

rate in Table I).

The third channel makes runs more likely in our model and typically outweighs the previous

two channels. Flexible yields introduce a new risk, which we call �dilution risk,�on top of rollover

risk and insolvency risk. If conditions deteriorate for a conduit, it will have to o¤er higher yields

to induce rollover. These higher yields increase the conduit�s debt by more, which dilutes earlier

lenders� stakes. This e¤ect depends strongly on the assumption that bankruptcy proceeds are

distributed pro rata, consistent with ABCP industry practice. A lender deciding whether to roll

over in our model anticipates the possibility of being diluted in the future if conditions worsen. The

lender therefore preemptively demands a higher yield to compensate her for dilution risk. Since

dilution risk increases yields for any given level of leverage, yields hit their cap at lower leverage,

implying a higher run threshold for inverse leverage, x�: Panel B in Table I shows that the run

threshold is indeed higher in our model compared to HX, which tends to make runs more likely.

III. Estimation

This section describes the data, SMM estimator, and intuition behind the estimation method.

A. Data

We obtain data on all issuance transactions in the U.S. ABCP market from the Depository Trust

and Clearing Corporation (DTCC). We observe the outstanding amount of paper for a conduit

each week and the distribution of maturities and yields each day a conduit issues ABCP.

We obtain data on each conduit�s guarantee type from Moody�s Investors Service. ABCP

conduits are structured with one of four possible types of guarantees (Acharya, Schnabl, and Suarez

(2012)). In conduits structured with a full guarantee, the sponsor provides a line that can be drawn
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regardless of asset defaults. In conduits with a full liquidity guarantee, the sponsor provides a line

that can be drawn as long as the assets are not in default. In structured investment vehicle (SIV)

guarantees, only a portion of conduit liabilities are covered by the line. In conduits created to issue

extendible notes, issuers have the option of extending the maturity of the paper at a pre-speci�ed

penalty rate, exposing investors to asset defaults during the extension period. From the point of

view of investors, full credit and full liquidity guarantees o¤er relatively stronger protection.

Covitz, Liang, and Suarez (2012) show that conduits with stronger guarantees experienced

signi�cantly fewer runs in 2007. For this reason, we estimate the model in two subsamples based

on guarantee strength.15 The �strong-guarantee�subsample contains the 191 conduits with either

a full credit or full liquidity guarantee; 45% of these conduits experienced a run in 2007. The

�weak-guarantee�subsample contains the 90 conduits with either an SIV guarantee or extendible

paper; 83% of these conduits experienced a run in 2007. We assume parameter values are constant

within each subsample.

We use the method of Covitz, Liang, and Suarez (2012) to identify runs in the data. More

speci�cally, we say that conduit i is in a run in week t if either (1) more than 10% of the conduit�s

outstanding paper is scheduled to mature, yet the conduit does not issue new paper; or (2) the

conduit was in a run in week t�1 and the conduit does not issue new paper in week t: We say that

a conduit recovers from a run in week t if it issues paper that week but was in a run the previous

week. By using the total amount a conduit rolls over, this de�nition avoids misclassifying as

runs situations where one creditor replaces another due to the �rst creditor�s idiosyncratic liquidity

needs.

We measure each conduit�s rollover spread as the dollar-weighted average annual yield for paper

issued on Thursday of week t; minus the prevailing federal funds rate.16 If the conduit did not

issue paper on Thursday, we move one day ahead until �nding an issuance transaction in week t.

15Ideally we would estimate the model in even �ner-grained subsamples, but the small number of conduits prevents
us from doing so.
16We choose Thursday because amounts outstanding are measured at the end of Wednesday each week.
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The total amount of ABCP outstanding peaked at $1.2 trillion in late July 2007. At that time,

339 ABCP conduits operated. Yield spreads averaged 5 bp in the �rst half of the year. In August

2007, the amount of debt outstanding plunged by $190 billion and average spreads increased to 74

bp.17 Roughly 25% of ABCP conduits experienced a run in August, according to our measure.

Rollover yields remained high and volatile in the second half of 2007. By the end of the year, the

total amount of ABCP outstanding was 30% below its peak.

Our analysis uses all transactions from 2007. We face the trade-o¤ that a larger sample would

provide more precise estimates, but it would be harder to argue that model parameters are constant

over a longer period. Year 2007 is an ideal sample because it contains many runs and also several

months of pre-run data. Adding observations from 2006 would not improve precision, because yield

spreads were near zero and there were no runs. Adding observations from 2008 would potentially

contaminate results with e¤ects from the Lehman Brothers failure and subsequent government

interventions.

B. Estimator

First we explain how we measure parameters �; �; �; and � directly from the data. Next we

describe the SMM estimation of the four remaining parameters.

Investors�discount rate � is also the risk-free interest rate. We set � to 4.9%, the annualized

yield of one-month T-bills at the beginning of 2007.

The average debt maturity in our model is 1=�: We set 1=� to 37 days, the average maturity

of ABCP as of March 2007. The assumption that � is constant may be somewhat problematic

given that most conduits experienced a rat-race whereby they o¤ered shorter maturities to prevent

creditors from running (Brunnermeier and Ohmke (2012)). While average rollover maturities do

17Important events in early August 2007 include American Home Mortgage�s declaration of bankruptcy (August
6), the halting of redemptions at three investment funds a¢ liated to BNP Paribas (August 9), emergency liquidity
provision by the ECB (August 9) and the Federal Reserve (August 10), and the downgrade of Countrywide Financial
and its drawing on bank credit lines (August 16).
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decrease in the six months preceding runs in our data, we �nd that they only drop from 38 days to

27 days. By contrast, changes in ABCP rollover yields were more dramatic, which is why we focus

on time-varying yields in this paper. Extending the model to include endogenous maturity is an

interesting avenue for future work.

The expected conduit lifespan, which corresponds to the asset�s duration, is 1=�: Adding the

assumption that new ABCP conduits are created at a constant rate, the model predicts that the

average age of conduits alive at any snapshot in time equals 1=�: The average age of ABCP conduits

operating in July 2007 is 5.8 years, so we set � to 1/5.8.

The parameter �; which represents the asset�s growth rate, is not identi�ed from our data. The

parameter � is not the asset�s expected return, which equals � (investors�discount rate). Therefore,

� would not be identi�ed directly from average returns on ABCP assets, even if we had those data.

The asset�s return at ��; the instant it matures, is positive (negative) if � is less than (greater

than) �.18 These event returns could help us identify �, but unfortunately those data are not

available, either. For our main results we set � = �; which assumes it is neither good nor bad

news for investors when the asset matures. For robustness, in the Internet Appendix we show that

parameter estimates do not change signi�cantly if we set � to �+ 1% per year.

The remaining parameters to estimate are � (asset volatility), � (the weakness of guarantees), �

(asset liquidity), and r (the cap on yield spreads). We estimate � as a structural parameter instead

of using price data on ABCP assets, because those data are not available. Data on conduit-

level asset holdings are not publicly available. Even constructing an industry-wide price index is

impossible, because we lack price data for illiquid assets like trade receivables, the largest ABCP

asset class.

We estimate the four remaining parameters using the simulated method of moments (SMM).

This estimator chooses parameter values that minimize the distance between moments generated

by the model and their sample analogs. The following subsection de�nes our 13 moments and

18The asset�s value immediately prior to �� is F
�
y��
�
: The asset�s value immediately after is y�� :
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explains how they identify our parameters. Additional details are in Appendix 3.

C. Identi�cation and choice of moments

Since we conduct a structural estimation, identi�cation requires choosing moments whose pre-

dicted values move in di¤erent ways with the model�s parameters, and choosing enough moments

so there is a unique parameter vector that makes the model �t the data as closely as possible. This

subsection explains how our 13 moments vary with the four parameters. Each moment depends on

all model parameters, often through parameters�e¤ect on leverage dynamics or the run threshold.

Below, we emphasize which parameters matter most for each moment, which explains which features

of the data are most important for each parameter. To illustrate, Table II presents the Jacobian

matrix containing the derivatives of our 13 moments with respect to our four parameters.19 For

both subsamples, the Jacobians have full rank and a low conditioning number,20 which con�rms

local identi�cation.

<INSERT TABLE II HERE>

C.1. Recoveries from runs

The �rst moment is the fraction of runs that are followed by a recovery, meaning that the conduit

issues paper again, at least once within eight weeks of the run�s start.21 In our model, once a run

starts, the probability of a recovery decreases in �; the guarantee�s weakness. Intuitively, a strong

guarantee buys time for asset values to improve so the conduit can exit the run. The Jacobian

19We present the Jacobian evaluated at estimated parameter values for the weak-guarantee subsample. The
properties of the Jacobian for the strong-guarantee subsample are very similar. In the interest of space, we report
the Jacobian for the strong-guarantee subsample only in the Internet Appendix. To make the sensitivities comparable
across moments, we express them as elasticities, e.g., @mi

@� � �
mi
is the elasticity of the i-th moment to �.

20The condition number of a matrix is the ratio of its largest to smallest singular value. Large condition numbers
indicate a nearly singular matrix.
21We �nd empirically that if a run is not followed by a recovery within eight weeks then it is unlikely that the

conduit will ever recover.
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in Table II con�rms that this �rst moment is most sensitive to � and fairly insensitive to other

parameters.

The second moment is the average number of days until recovery for those runs that experience

a recovery within eight weeks of the run�s start. Conditional on a recovery within a given period,

the expected time to recover is shorter for higher asset volatility �, because higher volatility makes

the conduit re-cross the run threshold sooner. Table II shows that this moment is indeed most

sensitive to �:

The remaining parameters have an indirect e¤ect on our �rst two moments through the run

threshold, x�: In this case, however, these e¤ects are relatively small, con�rming that the recovery

probability and the expected recovery time essentially identify � and � only.

C.2. Yield volatility

The moments we use to summarize yield spread volatility are the coe¢ cients �0 and �1 from

the following panel regression of absolute changes in yield spreads on the lagged yield spread:22

jrit � rit�1j = �0 + �1rit�1 + "it: (5)

The predicted yield spread volatility is given by

vart (drt) =

�
xt
@r

@x
(xt; x

�)

�2
�2dt: (6)

The �rst term in (6) increases in the yield spread, so the model predicts that yield volatility is high

when yield spreads are high. In other words, we should �nd �1 > 0 in (5). The model therefore

produces time-varying volatility in debt yields, even though asset volatility, �; is constant. The

term @r=@x in (6) goes to zero as yield spreads approach zero. Intuitively, if a conduit�s leverage

22Figure 3 plots the nonparametric relation in the data and shows that the linear, parametric speci�cation in
equation (5) �ts the data quite well. We discard observations with rit � 10 bp per year before estimating
the regression, since yield volatility for these observations is sensitive to the choice of initial condition x0 in our
simulations, and we want moments that do not depend on x0:
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is extremely low, yield spreads are near zero, and small changes in leverage still keep spreads near

zero. Therefore, the model imposes �0 � 0 as an overidentifying moment condition, regardless

of parameter values. As a result, yield volatility is informative about asset volatility only when

spreads are high.

Asset volatility has a direct, positive e¤ect on yield volatility through the � term in (6), and

also a negative e¤ect via the �rst term: a higher � decreases the absolute slope
�� @r
@x

�� for any given
r. For our parameter estimates, the second e¤ect dominates: we �nd that the sensitivity of yield

volatility to yield levels decreases with asset volatility, so � is partially identi�ed o¤ its negative

e¤ect on �1: Indeed, Table II con�rms that �1 depends negatively on �.

Note too that � has a strong positive e¤ect on �1: The reason is that an increase in asset liquidity

decreases the run threshold, x�; which in turn implies a higher absolute slope
�� @r
@x

�� for any given r:
Intuitively, if two conduits with assets of di¤erent liquidity have reached the same yield spreads, it

must be that yields are increasing faster for the one with higher liquidity.

C.3. Yield spreads preceding runs

Our next three moments measure average yield spreads in event time before runs. We de�ne

� it as the number of weeks relative to the run�s start, and we use the subset of data from the 12

weeks preceding each run to estimate the regression

rit = 0 + 1� it + 2 exp (� it) + "it: (7)

Figure 4 shows that this speci�cation �ts the path of average yield spreads leading up to runs fairly

well. Our next three moments are the coe¢ cients 0; 1; and 2; which summarize event-time

spreads.

As discussed in Section I.D, the model predicts that a run begins the instant yield spreads hit r:

Since we do not have continuous-time data on rollover yields, the last observed yield spread before

a run is not necessarily r. However, yield spreads in all weeks leading up to a run are increasing
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in r: Intuitively, to reach a higher spread r when the run starts, average spreads must be higher in

all weeks before a run. Therefore, r is identi�ed mainly o¤ 0; 1; and 2: The estimated Jacobian

shows that these three moments are by far most sensitive to r and therefore e¤ectively identify r:

C.4. Run probabilities

Our next moments are from three regressions that forecast future runs using current yield

spreads. The regressions have the form23

1frun begins within � weeks of itg = �0� + �1�
rit

maxri
+ "it; (8)

where maxri proxies for the conduit�s maximum yield spread. For conduits with runs, maxri is the

conduit�s maximum observed yield spread. For conduits with no runs, maxri is the larger of the

conduit�s maximum observed yield spread and the average maxr across conduits that experienced

runs. The reason for normalizing spreads bymaxri is to provide moments that control for di¤erences

in r; the yield-spread cap, across conduits.24 We estimate regression (8) for forecasting horizons

of � = 2; 4; and 8 weeks. Our last six moments are the coe¢ cients �0� and �1� from those three

regressions:

The moment �0� summarizes the run probability when spreads are near zero. Therefore, this

moment depends negatively on the distance between x0 and the run threshold, x�; which is itself

decreasing in �: Table II shows that �0� is strongly decreasing in �; so these moments e¤ectively

identify � through ��s e¤ect on the run threshold. Note that a higher r also implies a lower run

probability when yield spreads are near zero. However, since � has a strong e¤ect on yield levels,

23Following Angrist and Pischke (2009), we use OLS rather than a probit/logit model, because OLS slopes are easier
to interpret, and OLS provides the closest linear approximation of the conditional expectation function. Figures
5 and 6 show that the linear speci�cation in (8) �ts the raw data quite well. As in regression (5), we exclude
observations with rit <10 bp per year; run probabilities for these observations are sensitive to the choice of initial
condition x0 in our simulations, and we want moments that do not depend on x0:

24While the estimation procedure assumes r is constant across observations, empirically we �nd some heterogeneity
in maxri: For this reason we interpret our estimate of r as the average of r across conduits within the sample. Also,
we estimate in subsamples to the extent possible in order to accommodate parameter heterogeneity.
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which impact the drift of leverage, a lower � not only implies a lower distance to the run threshold,

but also a quicker transition to it. As a consequence, the di¤erence between a conduit that never

experiences a run as opposed to a conduit that experiences a run quickly is more likely to be due to

a di¤erence in � rather than r: Consistent with the above intuition, the estimated Jacobian shows

that �0� is more sensitive to � than r for the 2- and 4-week run probabilities, but not for the 8-week

probabilities.

IV. Estimation results

We start by assessing how well our model lines up with data from the 2007 ABCP crisis. We

then present and interpret the structural parameter estimates.

A. Model �t

Table IV compares actual and simulated values of our 13 moments. The left (right) half of the

table shows moments in the weak- (strong-) guarantee subsample.

<INSERT TABLE IV HERE>

Moments 1 and 2 focus on recoveries from runs. Comparing moment one across subsamples,

we see that the probability of a recovery is signi�cantly higher (t =2.0) in the strong-guarantee

subsample, consistent with the model�s prediction. When recoveries do occur, they arrive 17 days

after the run�s start, on average (moment 2). Comparing simulated and actual moments, the model

closely matches both the observed probability of a recovery and the average time until recovery.

Moments 3 and 4 measure the overall level of yield spread volatility and its sensitivity to yield

spread levels. The standard errors of the actual moments indicate that moments 3 and 4 are

measured fairly imprecisely, in large part because of comovement in yields across conduits. The

sensitivity of yield volatility to the yield level is positive in both subsamples, consistent with the
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model�s prediction, but the slope is statistically signi�cant only in the strong-guarantee subsample

(t = 2:13): Although the simulated and actual moments di¤er in some cases by more than a factor

of two, the t�statistics in Table IV indicate that the di¤erences are not statistically signi�cantly.

Figure 3 shows the nonparametric relation between yield volatility against the yield level, and it

also shows the best-�t relation summarized by moments 3 and 4. We see that the model produces

slightly lower yield spread volatility than we see in the data. Some of this �extra�yield volatility

in the data is likely due to measurement error.

<INSERT FIGURE 3 HERE>

Moments 5 to 7 measure yield spreads leading up to a run. The t-statistics show that, in each

subsample, the actual and simulated moments are not signi�cantly di¤erent from each other. The

high standard errors, though, indicate that the actual moments are measured with considerable

error. This error results from the limited number of runs in our sample, and also from comovement

in yields. Figure 4 plots yield spreads in event time leading up to runs, comparing actual and sim-

ulated data, and also comparing the nonparametric pattern in the data to the moments�parametric

relation. In both actual and simulated data, we see that yield spreads start below 10 bp/year 26

weeks before runs start, then spreads increase exponentially leading up to runs. Spreads reach a

higher level in actual data than in simulated data. By choosing a higher estimate of the yield cap,

r; we could match the actual pattern more closely, albeit at the expense of other moments. The

SMM weighting matrix makes the estimator match these moments less closely since we measure

them fairly imprecisely.

<INSERT FIGURE 4 HERE>

Examining moments 8 to 13, we see that yield spreads forecast runs in the actual data: the slope

on yield spreads is signi�cantly positive (t-statistics between 2.2 and 8.2) in both subsamples and at
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forecasting horizons of 2, 4, and 8 weeks. The simulated slopes are also positive, so high yields also

forecast runs in the model. While the model is able to �t the directional pattern in the data, the

model is not able to match magnitudes exactly: the simulated and actual slopes are signi�cantly

di¤erent, and so are the intercepts. To allow for an easier comparison, Figures 5 and 6 plot the

relation between yields and run probabilities. Despite the di¤erence in moments, the forecasting

relation looks quite similar in actual and simulated data for the weak-guarantee subsample (Figure

5).25 The similarity is apparent both in the nonparametric plots (left panels) and parametric plots

based on moments 8�13 (right panels).

<INSERT FIGURES 5 AND 6 NEAR HERE>

The �t is not as close in the strong-guarantee subsample (Figure 6). Speci�cally, the model

struggles to explain why conduits with strong guarantees experienced few runs even when their yield

spreads reached high levels. One potential explanation is that investors feared sponsors would not

fully honor these strong guarantees, which imposed large liabilities on the sponsors. These fears

resulted in high yield spreads. Ex post, sponsors honored the guarantees to an unexpected degree,

potentially because of reputational concerns, which explains why there were few runs.

These forecasting results contribute to the debate over what causes runs. The literature has

been divided in two groups (see Goldstein (2010) for a survey). The �rst group proposes that

a run�s causes are unobservable, so it is impossible to forecast or assign probabilities to runs.26

The second group, motivated by Gorton (1988), proposes that runs are caused by deteriorating,

observable fundamentals, hence we can forecast and assign probabilities to runs. Our model, along

with several others, belongs to this second group.27 We show that yields do forecast runs in our

25The reason the moments look di¤erent while the plots look similar is that the model gets the intercept too low
but the slope too high, and these two di¤erences o¤set each other in the �gure.
26This group follows Bryant (1980) and Diamond and Dybvig (1983). The unobservable is sometimes labelled a

sunspot.
27Goldstein and Pauzner (2005), He and Xiong (2012), Morris and Shin (1998), and Vives (2011) also belong to

this group.
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data. Further, our model of fundamental-driven runs comes close to �tting this empirical pattern,

at least in one subsample.

Table IV contains p-values for the SMM test of overidenti�yng restrictions, which jointly tests

whether the model �ts all moments. The low p-values indicate the data strongly reject the model

in both subsamples. We do not interpret this result negatively, since rejection is common when

trying to match many moments with few degrees of freedom. In this case, we attempt to match 13

moments with four free parameters, which is quite demanding.

To summarize, the model �ts the data reasonably well in the weak-guarantee subsample. The

model is able to match not just directional patterns in the data, but also magnitudes in most cases.

We focus on estimates from the weak-guarantee subsample in our policy analysis.

B. Parameter estimates

Table III contains parameter estimates along with their standard errors.28 We provide several

consistency checks below to ensure that parameter estimates are reasonable.

<INSERT TABLE III HERE>

The estimates of � imply that investors expected conduits with strong (weak) guarantees to

survive 262 (82) days in a run before the guarantee failed.29 The estimate of � is signi�cantly

higher (t = 2:04) in the weak-guarantee subsample. This result provides a useful consistency

check: our parameter estimates imply weaker guarantees in the subsample with weaker guarantees.

The asset�s estimated volatility (�) is roughly 3.5% (4.3%) per year in the strong- (weak-)

guarantee subsample. The di¤erence across subsamples is statistically signi�cant (t = 6:3); possibly

28Parameters�standard errors depend on the 13�13 covariance matrix for the empirical moments. When esti-
mating this matrix, we take into account time-series autocorrelation as well cross-conduit correlation, both within
moments and across moments. We also perform a two-step correction to account for measurement error in parameters
� and �: Details are in Appendix 3.

29Once a run starts, the average time until credit line failure is 1= (��). As Section III.B explains, our estimate of
1/� is 37 days.
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because conduits o¤ering weak guarantees had incentives to hold riskier assets. As a comparison

to our estimates, the volatility of the ABX mortgage index in the �rst half of 2007 was 5.7%. The

other asset categories ABCP conduits hold, such as trade receivables, are likely less volatile than

the ABX was in 2007 (as suggested by Figure 1), so an estimate for � slightly below 5.7% seems

reasonable.

The estimated cap on yield spreads, r; is 36 (60) bp per year for the strong- (weak-) guarantee

subsample. This di¤erence in caps across subsamples is statistically signi�cant (t = 2:7). The

higher r in the weak-guarantee subsample makes sense if yield caps re�ect the sponsor�s cost of

borrowing o¤ its own balance sheet (Section I.B). The sponsors o¤ering strong guarantees (mostly

large commercial banks) face lower borrowing costs than sponsors o¤ering weak guarantees (mostly

smaller nonbanking �nancial institutions).

Our estimate of �; the asset�s liquidity or recovery rate in default, is 97% (92%) in the strong-

(weak-) guarantee subsample. The di¤erence across subsamples is not statistically signi�cant. For

comparison, Coval and Sta¤ord (2007) �nd a 92% recovery rate for stocks during �re sales. Ellul,

Jotikashira, and Lundblad (2010) report a 93% recovery rate for corporate bonds during �re sales.

For corporate defaults, Hennessy and Whited (2007) measure recovery rates of around 90%, and

Andrade and Kaplan (1998) estimate recovery rates of roughly 80-90%. Our estimates are on the

high end of the literature�s range, which makes sense given that conduits mainly owned �nancial

rather than real assets.

The last column in Table III shows the model�s predicted run threshold implied by our parameter

estimates. The model predicts that lenders run as soon as leverage exceeds 92% (97%) for

the SIV/extendible (full credit/liquidity) subsample. As a consistency check, we compare these

predicted leverage thresholds to actual data on conduit leverage, which were not used in estimation.

Detailed data on conduit leverage are not available even to regulators, but from Moody�s reports

we can make rough estimates of leverage for 11 SIVs. These conduits�leverage ranged from 92%
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to 94% preceding runs in 2007,30 which is reassuringly close to the predicted 92% threshold.

V. What drives runs?

All the parameters estimated above potentially a¤ect the likelihood of runs. In this section we

use the estimated model to measure the sensitivity of run probabilities to each of these contributing

factors. We also measure runs� sensitivity to changes in asset values and creditors� ability to

coordinate. In the next section we discuss implications for regulators, banks, and investors.

A. Sensitivity of runs to model parameters

We measure the sensitivity of runs to the model�s eight parameters by computing run proba-

bilities for a range of counterfactual parameter values. Figure 7 plots simulated three-month run

probabilities. In each panel we vary one parameter at a time. The blue vertical line marks the

parameter�s estimated value. We tabulate these results and present one-year run probabilities in

the Internet Appendix.

<INSERT FIGURE 7 NEAR HERE>

The top left panel shows that run probabilities are extremely sensitive to conduits� leverage

(1/x0). For instance, reducing leverage by 1% from 91.4% to 90.4% reduces the run probability

by 32 percentage points from 70%, i.e., roughly a 45% decrease. Leverage is not a parameter we

30Moody�s Investors Service (2008) reports that SIVs�net asset value of capital (NAV), de�ned as the di¤erence
between the market value of portfolio assets minus the notional amount of senior liabilities expressed as a percentage
of paid-in capital, averaged 102.5% in January 2007. NAV maps into (F (yt)�Dt) =Kt in our model; where Kt is
paid-in capital. Based on individual program reports published by Moody�s available for 11 SIVs, we estimate that
the ratio of capital notes to senior liabilities, which maps into Kt=Dt; ranged from 6 to 9% across SIVs in December
2006. Since F (yt) = yt when � = �; we obtain the formula

yt
Dt

= NAVt �
�
capital notes
senior liabilities

�
t

+ 1:

This formula, combined with the data from Moody�s reports, delivers the 92 to 94% range for leverage (Dt=yt).
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estimate, but instead serves as the initial condition for our simulations. Each of the remaining

panels shows results for a high-leverage (solid line) and low-leverage (dash-dot line) scenario.31 The

dashed lines in the top left panel mark these two scenarios. The high-leverage scenario represents

the late, severe stage of a funding crisis, while the low-leverage scenario represents an earlier, less

severe stage. Since results are qualitatively similar between these two scenarios, we focus on just

the high-leverage scenario for the discussion below.

The top middle panel shows that runs are extremely sensitive to small changes in asset liquidity

(�) or, equivalently, recovery rates in default. For example, increasing � by 1% from its estimated

value of 0.92 reduces the run probability by 31 percentage points from 70%, roughly a 45% decrease.

The main intuition for this result is that a creditor ultimately runs because she fears there will not

be enough of the asset to pay her if default occurs before her debt matures. A higher � increases the

payout to creditors in default, e¤ectively acting as deposit insurance. Leverage and liquidity have

similarly large e¤ects on runs, because increasing liquidity by 1% e¤ectively reduces the conduit�s

leverage (net of the �re-sale discount, in the default state) by roughly 1%. Both e¤ects are large

because each has a direct e¤ect on yields through the creditors�indi¤erence constraint.

The impact of liquidity is even more striking given that a 1% change in � amounts to an 11.5%

(1%�0.92/(1-0.92)) change in the illiquidity discount, which is well within the estimated discount

variation in the literature. For example, Coval and Sta¤ord (2007) report a standard deviation of

9.72% in the �re-sale discount of stocks. The estimates in Ellul, Jotikashira, and Lundblad (2010)

imply a standard deviation of almost 25% for �re-sale discounts on corporate bonds.

The asset�s growth rate � and the risk-free rate � have a smaller but still signi�cant e¤ect on

run probabilities. Increasing � by 1% or reducing � by 1% from their base-case values (both 4.9%)

reduces the run probability by 10 percentage points, roughly a 14.5% decrease. Increasing � or

decreasing � increases the asset�s value, which e¤ectively reduces the conduit�s leverage. Reducing

31High (low) initial leverage is 91.4% (90.0%), which produces a 70% (26%) three-month run probability. We
choose these values because they imply that yield spreads are at 50% (10%) of their capped value, r, for the high-
(low-) leverage case.
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the risk-free rate also makes the conduit�s leverage increase more slowly.

The remaining panels show that every parameter a¤ects the likelihood of a run and, furthermore,

is capable of bringing the run probability close to zero. However, we need larger changes in the

remaining parameters to achieve large reductions in run probabilities. Reducing the probability by

31 percentage points, as achieved by increasing � by 1%, requires either reducing asset volatility

� from 4.3% to 2.6% per year (a 40% decrease); increasing average debt maturity 1=� from 37 to

107 days (a 190% increase); increasing the cap on yield spreads r from 0.6% to 2.7% per year (a

358% increase); increasing 1/(��) (the average time the guarantee survives during a run) from 82

to 422 days (a 413% increase); or reducing the asset�s expected maturity 1/� from 5.8 years to 39

days (a 98% decrease). As expected, changes that reduce the mismatch between asset and debt

maturity reduce the likelihood of runs. Increasing the yield cap makes runs less likely by allowing

more room for yields to adjust upwards as conditions worsen; this e¤ect outweighs the increased

dilution risk that comes with a higher yield cap. Our parameter estimates in Table III imply

that guarantees�expected lifespans were 218% longer in conduits with stronger guarantees, which

helps explain Covitz, Liang, and Suarez�s (2012) �nding that conduits with stronger guarantees

experienced signi�cantly fewer runs in 2007.

B. Sensitivity of runs to asset values

One way to measure the fragility of ABCP conduits in 2007 is to ask, how much did asset values

need to drop to trigger a run? The answer depends on how levered conduits were before the crisis

began. Since these data are not available, we answer the question for several starting leverage

values. We simulate many conduits for one year with a given initial leverage value, using estimated

parameter values from the weak-guarantee subsample (Table III).

Table V reports statistics on the percentage change in asset values preceding runs, for several

initial leverage values. The table shows that for a conduit with 85% leverage, asset values need to

drop 4.39% to trigger a run, on average. For comparison, our estimated asset volatility is 4.30%
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per year. As expected, conduits with higher initial leverage are more fragile, in the sense that a

smaller drop in asset value will trigger a run. For example, if leverage starts at 90%, asset values

need drop only 0.68% to trigger a run, on average.

C. Sensitivity of runs to coordination failures

In many models of runs, including Diamond and Dybvig (1983) and Goldstein and Pauzner

(2005), runs are either impossible or less likely if lenders can coordinate. To gauge how coordination

failures a¤ect runs on ABCP conduits, we compare our main model, which assumes lenders cannot

coordinate, with a model that features a single lender but is otherwise identical. Unlike the

in�nitesimal creditors in our main model, the single creditor internalizes the cost that a run imposes

on the portion of her debt that has not yet matured. The Appendix provides details on the single-

creditor model�s setup and solution.

Surprisingly, we �nd that allowing coordination can make runs certain and immediate. Specif-

ically, the model predicts that if � < 1; which implies that the credit line is expected to outlast

the average debt contract, then a single creditor will never roll over his or her debt.32 We focus

on the case where � < 1; because both estimates of � in Table III are signi�cantly less than one.

Intuitively, with a strong backup credit line, the bene�t of running exceeds its cost. The cost

depends on the probability ��dt that the backup credit line fails and the conduit liquidates assets

in the next instant. The bene�t is that the creditor pockets the fraction �dt of his debt maturing

each instant. Essentially, while the staggered structure of debt maturities prevents the single lender

from running immediately with all the outstanding debt, the strong guarantee allows the creditor

to gradually �withdraw�almost his full amount before causing early asset liquidation.

We draw three lessons from this result. First, allowing coordination can exacerbate the rollover

problem, especially for empirically relevant parameter values. One policy implication is that

32� < 1 implies that the expected time the credit line will survive during a run ( 1�� ) exceeds the expected debt
maturity (1/�):
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helping creditors coordinate during a crisis may hasten rather than delay conduits�demise. Second,

to make a conduit work with a single creditor and staggered maturities, the backup credit line

must be su¢ ciently weak so that the creditor is not too attracted to using it. Conversely, strong

backup credit lines are feasible for ABCP conduits precisely because coordination is costly for their

dispersed creditors.

VI. Policy discussion

There are several reasons why regulators may want to prevent runs. Runs on �nancial insti-

tutions may disrupt the �ow of credit to non�nancial �rms that rely on intermediated �nance to

fund investment and operations and, thus, ultimately harm economic activity. The view that bank

runs hamper economic activity is supported by evidence from banking crises in the United States

(Friedman and Schwartz (1963), Bernanke (1983), Calomiris and Mason (2003), Ramirez and Shiv-

ely (2012)) and cross-country studies (Kaminsky and Reinhard (1999), Dell�Aricia, Detragiache,

and Rajan (2008)). Also, a run on one part of the �nancial system may trigger runs on other parts,

amplifying the run�s costs. For example, a run on ABCP could trigger a run on money market

funds (the main investors in ABCP) or a run on the large banks sponsoring ABCP conduits.

Before discussing how regulators might prevent runs, we describe the warning signs that reg-

ulators, banks, and investors can use to gauge the probability of a future run. According to the

model, the warning signs are high conduit leverage and high rollover yields. Furthermore, the

model provides a quantitative mapping between these warning signs and the probability of runs

at various horizons (Figure 8). While conduit leverage (top panel) is a useful warning sign for a

conduit�s sponsor, it is less useful to regulators or investors, who currently cannot observe leverage.

The bottom panel, which maps yield spreads into run probabilities, is useful to all parties.

<INSERT FIGURE 8 NEAR HERE>
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In the previous section we measure how run probabilities change when we perturb each model

parameter away from its estimated value. As in Rochet and Vives (2004) and Vives (2011), we

interpret these perturbations as interventions by regulators or conduit sponsors. The estimated

sensitivities are important for regulators interested in controlling the risk of runs on ABCP conduits

and similar intermediaries. These sensitivities can also help sponsoring banks control the risk of

runs when managing existing conduits or designing new ones.

Our analysis shows that runs are very sensitive to small changes in leverage. This result implies

that conduits�sponsors can signi�cantly reduce the probability of future runs by including more

equity in new conduits�capital structure. Regulators can achieve the same e¤ect by placing restric-

tions on new conduits�leverage. Our result also suggests that once a crisis is underway, modest

equity injections by either conduit sponsors or regulators can make runs signi�cantly less likely. For

example, the average ABCP conduit, which held $3.9 billion in assets in January 2007, would have

cut its three-month run probability by more than half with a $39 million equity injection.

The previous analysis also shows that runs are very sensitive to �; the asset�s liquidity, i.e.,

expected recovery rate in default. For example, increasing recovery rates by 1%, which translates

into subsidizing asset values in default by $39 million for the average conduit in 2007, would have

reduced the three-month run probability by more than half. It is less clear how regulators or

sponsoring banks can improve liquidity. One possibility is that regulators make a market in

distressed assets or purchase them outright.

We interpret reducing the asset�s volatility (�) or increasing its growth rate (�) as buying

higher quality assets. Sponsors can clearly in�uence asset quality when creating new conduits, but

probably not once a crisis is underway. Regulators could in�uence asset quality by placing credit

rating restrictions on the assets conduits buy, similar to the restrictions on money market funds.

However, our results show that an e¤ective control of the run probabilities would require large

changes in � and especially �.

Figure 7 suggests several remaining channels for preventing runs. Increasing � corresponds to
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the conduit buying shorter-term assets, and decreasing � corresponds to increasing debt maturities;

both reduce the degree of maturity mismatch between assets and liabilities. Reducing � corresponds

to a strengthening the conduit�s guarantee, which, to be credible, may not only require strengthening

its legal terms, but also improving the sponsor�s own �nancial health. Reducing � corresponds

to reducing the federal funds rate. If the cap on yield spreads (r) results from restrictions on

money market funds (Section I.B), then regulators could increase r by loosening the requirement

that money market funds mainly invest in A-1/P-1-rated assets. Our sensitivity analysis implies

that interventions targeting these channels will have small e¤ects on the likelihood of runs, unless

the interventions can change these parameters by a large amount. For example, to match the

e¤ectiveness of a 1% equity injection in January 2007, the average conduit�s sponsor would have to

commit an additional $829 million to the conduit�s backup credit line.33

There are caveats to our policy analysis. First, our analysis does not consider how policy inter-

ventions directed at ABCP conduits may spill over to other markets. To wit, an increase in the

rollover yield caps may delay runs on ABCP conduits at the expense of weakening their sponsor�s

balance sheet, or at the expense of making money market funds take on more risk. Second, we do

not address how policy interventions may a¤ect future crises via moral hazard. Third, our sensi-

tivity analysis is subject to the Lucas critique, as it does not consider how changing one parameter

may a¤ect other parameters. For example, Cheng and Milbradt (2012) endogenize the choice of

the asset�s growth rate and volatility of a short-term �nanced �rm, such as an ABCP conduit, and

�nd that a lengthening of debt maturities may lead to more risk-shifting. A comprehensive policy

33The expected payout to creditors during a run is

E

�Z ��

0

�D�e
��tdt

�
=

D�
1 + �

;

where D� is the total debt outstanding when the run starts. We estimate D� as using the NAV per conduit in
January 2007 divided by x� = 1=0:92: The additional capital required to sustain a stronger credit line is therefore

D� �
�

1

1 + �1
� 1

1 + �0

�
;

where �1 = 0:087 is the counterfactual value and �0 = 0:449 is the estimated value.

34



analysis would need to incorporate the reaction of ABCP conduit managers and investors to any

interventions. We leave this analysis to future research.

VII. Conclusions

We estimate a dynamic model of debt runs using data from the 2007 crisis in asset-backed

commercial paper. The model allows yields to change over time, which introduces dilution risk:

the conduit must o¤er higher yields to induce rollover if conditions worsen, which dilutes the claims

of other lenders. Introducing dilution risk into the model can increase the likelihood of a run by

more than an order of magnitude. Our model of fundamental-driven runs �ts several features of the

data, including the dramatic increase in yields on ABCP leading up to runs, the high probability

of recovery once a run starts, the positive relation between yields and the probability of future

runs, the overall level of volatility in ABCP yields, and the positive relation between yield volatility

and the yield level. The model �ts much better in the subsample of conduits with the weakest

guarantees. We �nd that runs are very sensitive to conduit leverage and expected asset liquidation

costs. Runs are much less sensitive to the degree of maturity mismatch, the perceived strength of

guarantees, and the asset�s volatility. Surprisingly, allowing creditors to coordinate can make runs

certain and immediate. These results can help regulators and banks control the risk of runs.

Our analysis can be extended and improved in two directions. To keep the estimation tractable,

we assume that yields cannot exceed an exogenous cap. It would be interesting to explore the

determinants of this cap. Finally, the dynamic debt runs framework, and estimation method we

propose here, can potentially be used to study runs on money market funds and sovereign debt.
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Appendix 1: Model solution

As in He and Xiong (2012), we focus on symmetric monotone rational expectations equilibria,

where each creditor is best-responding to all others�decision to run if and only if the fundamental

asset value drops below a common threshold, y�: To solve for our model�s threshold, we show �rst

that the creditor�s value function depends only on one state variable: the conduit�s (inverse) leverage,

xt; i.e., the ratio of asset value, yt; to total debt, Dt: We start by characterizing the dynamics of

the conduit�s debt, then of xt; and then solve for the threshold x�.

Debt dynamics

Since all debt is equally likely to roll over in the next instant, regardless of when and at what

yield it was originated, then the total face value of paper outstanding at t; Dt; equals the average

face value of debt rolling over at time t: Debt dynamics follow (3) since a fraction �dt of debt

matures at each instant, and for every dollar of face value that is rolled over, the conduit issues new

debt at face value Rt:

Value function

At any date � ; there are three possible payouts for a lender who holds debt with face value Rs

where s � � :

1. The conduit matures at time � = �� so that the creditor is either paid in full or gets a share

of the assets proportional to his face value, i.e.,

Rs
D��

�min
�
D�� ; y��

�
= Rsmin

�
1;
y��
D��

�
: (9)

2. The conduit defaults at time � = � � after other creditors run and backup credit lines fail. The

creditor recovers a share of the post-liquidation net present value of the asset, i.e.,

Rs
D��

min (D�� ; ly��) = Rsmin

�
1; l

y��
D��

�
; (10)
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where

ly�� � �
�

�+ �� �y�� : (11)

3. The debt contract matures at time � = � �, allowing the creditor to choose between rolling

over or running. Because the amount of debt maturing at each instant is in�nitesimally small,

a creditor that chooses to run will be paid o¤ in full. If the creditor rolls over, the old loan

is retired and a new loan is issued with face value R�� . Let V (y� ; D� ; Rs; y
�) be the value in

time � of one dollar loaned at time s � � : The lenders payo¤ in � � is therefore

max
roll over or run

fRsV (y�� ; D�� ; R�� ; y
�) ; Rsg = Rs max

roll over or run
fV (�) ; 1g

Combining these three possible payo¤s, the time t value to a creditor who last loaned one dollar

at time s � t equals

V (yt; Dt; Rs; y
�) = Et

�
e��(��t)Rsmin

�
1;
y�
D�

�
1f�=��g

�
+ (12)

Et

�
e��(��t)Rsmin

�
1; l

y�
D�

�
1f�=��g

�
+

Et

n
e��(��t)Rs max

rollover or run
fV (y�� ; D�� ; R�� ; y

�) ; 1g1f�=��g
o
:

For xt � yt=Dt; equation (12) simpli�es to

V (yt; Dt; Rs; y
�) = RsW (xt;x

�) ; where (13)

W (xt;x
�) = Et

n
e��(��t)min (1; x� )1f�=��g

o
+ (14)

Et
�
e��(��t)min (1; lx� )1f�=��g

	
+

Et

n
e��(��t) max

rollover or run
fR�W (x� ;x

�) ; 1g1f�=��g
o
:

W (xt; x
�) is the value at time t of each dollar of face value. This value does not depend on

when the creditor last rolled over, due to the memoryless properties of the exponential distribution.
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Moreover, Applying Ito�s Lemma and equation (3), it is straightforward to show that inverse leverage

follows
dxt
xt
= [�� � (Rt � 1)] dt+ �dZt: (15)

Since the value function (14) and the dynamics of xt are both functions of xt only, then xt is the

only state variable of the problem.

Equilibrium debt prices and run threshold

Creditors break even if for every $1 invested in the conduit at time t; they receive a loan worth

$1. Formally, creditors break even if

1 = RtW (xt;x
�) ; (16)

Since face values cannot exceed the cap, R; the rollover face value is

Rt = min
�
R;W (xt;x

�)�1
�
:

The following Proposition states that runs will not occur at face values Rt below the cap R but

only when Rt exactly hits the cap. That is, the equilibrium condition that de�nes x� is

R = W (x�;x�)�1 :

Proposition 1 Let Rt � min
�
R;W (xt;x

�)�1
�
: Then

Rt =

8<:
W (xt;x

�)�1

R = W (xt;x
�)�1

R

if xt > x�;
if xt = x�

if xt < x�:

Proof of Proposition 1. Note �rst that any creditor�s continuation payo¤ must be equal to 1.

By de�nition, for any xt; the payo¤s are

max
run or roll over

f1; RtW (xt; x
�)g = max

run or roll over

�
1;min

�
R;W (xt; x

�)�1
�
W (xt; x

�)
	

= max
run or roll over

�
1;min

�
RW (xt; x

�) ; 1
�	
= 1:
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First we show Rt = R if xt < x�: If xt < x�;creditors will refuse to roll over their loan at

maturity. Because running gives them a payo¤ of 1, rolling over must give them a strictly lower

payo¤, i.e., RtW (xt; x
�) < 1: By de�nition of Rt, this inequality becomes

min
�
R;W (xt; x

�)�1
�
�W (xt; x

�) < 1:

Since W (xt; x
�)�1 �W (xt; x

�) = 1; it must be that min
�
R;W (xt; x

�)�1
�
= R: Therefore, Rt = R.

Suppose that xt � x�: In this case, creditors choose to roll over. If they do so, their payo¤must

be at least as high as running, which pays 1. Because their payo¤s are bounded above by 1, then

rolling over must always pay 1. Therefore, for xt � x�

min
�
R;W (xt; x

�)�1
�
�W (xt; x

�) = 1

) min
�
RW (xt; x

�) ; 1
�
= 1:

The previous equality holds if either RW (xt; x
�) > 1 for every x � x� or if there exist some

x0 2 [x�;1) where RW (x0; x�) = 1 and RW (xt; x
�) > 1 for all other xt 6= x0: Because W (x; x�) is

strictly increasing in x; then x0 is unique. Moreover, because RW (x0; x�) = 1 is a minimum, then

x0 = x�; i.e., the lowest point in the support. In summary, then either

Rt =

�
W (xt; x

�)�1 > R
R

for all xt � x�;
if xt < x�:

[case (i)]

or

Rt =

8<:
W (xt; x

�)�1

R
R

if xt > x�

if xt = x�

if xt < x�
[case (ii)].

Next we show that case (i) cannot be true, because it implies a contradiction. In case (i) we have

R� � W (x�; x�)�1 < R

exactly at the run boundary. Hence we have

1 = R�W (x�; x�) < RW (x�; x�) : (17)
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The equality above is from the de�nition of R�; and the inequality is from W > 0 and R� < R: By

the assumed continuity ofW (x; x�) at x = x�; there exists a � > 0 such that for all x0 2 (x� � �; x�) ;

RW (x0; x�) > 1: We therefore have a contradiction: At x0 < x� the investor runs (since we assume

runs happen below x�), but at x0 it is not optimal to run (since RW (x�; x�) ; the payo¤ from rolling

over at Rt = R; is strictly greater than 1, the payo¤ from running).

Analytical solution to the ODE for W (x; x�) below the run threshold

Using equations (14) and (15), we can write the general Hamiltonian-Jacobi-Bellman (HJB)

equation:

�W (xt;x
�) = [�� � (Rt � 1)] xtWx (�) +

�2

2
x2tWxx (�) (18)

+� [min (1; xt)�W (�)]

+��1fxt<x�g [min (1; lxt)�W (�)]

+�
h

max
rollover or run

fRtW (xt;x
�) ; 1g �W (�)

i
:

For a given threshold x� ; the HJB equation can be solved analytically for xt < x� () Rt = R <

W (xt; x
�)�1 : The general solution to this Ordinary Di¤erential Equation is

W (x; x�) = d1x
� + d2x

� � a5
a3
� a4
a3 + a1

x;

for

� � 1

2a2

�
a2 � a1 +

q
(a2 � a1)2 � 4a3a2

�
> 1;

� � 1

2a2

�
a2 � a1 �

q
(a2 � a1)2 � 4a3a2

�
< �1;

a1 =
�
�+ � � �R

�
a2 =

�2

2
> 0

a3 = � (�+ �+ �� + �) < 0

a4 = ��l1fx�1=lg + �1fx�1g � 0

a5 = � + ��l1fx�1=lg + �1fx�1g > 0;
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with limits

Wx (0; x
�) =

��
�

��
�+���

�
+ �

�R + (�+ �� �) + ��
> 0;

W (0; x�) =
�

�+ �+ �� + �
> 0;

lim
x!1

W (x; x�) =
�+ �

�+ � + �
:

and where the values of d1 and d2 are obtained by imposing smooth-pasting and value matching at

x = 1; x = 1=l and on x�:

Case 1: For 0 < x� � 1

The solution is

W (x; x�) = A1x
� � a5

a3
� a4
a3 + a1

x; for x � x�;

A1 =

�
1

R
+
a5
a3

�
(x�)�� +

a4
a3 + a1

(x�)1�� :

Case 2: For 1 < x� � 1=l

The solution is

W (x; x�) =

�
A2x

� � a5
a3
� a4

a3+a1
x; for x � 1

B1x
� +B2x

� � b5
a3
� b4

a3+a1
x; for 1 < x � x�;

A2 =

�
1

R
+
b5
a3

�
(x�)�� +

b4
a3 + a1

(x�)1�� �B2 (x�)��� �
�

 + �

�


a3
�  + 1

a3 + a1

�
;

B2 =
�

 + �

�
(1� �)
a3 + a1

+
�

a3

�
;

B1 = A2 +
�

 + �

�


a3
�  + 1

a3 + a1

�
:

Case 3: can x� > 1=l?

For some parameter values, case 2 implies that creditors run on a solvent conduit. That is,

if F (yt) > Dt (which implies x > 1) then the conduit is able to repay all the debt if the asset
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is not liquidated at a discount. But creditors will not run frantically, i.e., if the post-liquidation

value of the asset �F (yt) ; is larger than Dt: Intuitively, a creditor cannot best-respond to other

creditors�decisions to run on a super-solvent conduit, because rolling over guarantees the creditor

a full payment even if the asset is liquidated. Formally, smooth-pasting at W (1=l; x�) implies that

Wx < 0 for all 1=l < x < x�; i.e., frantic runs require that bond values decrease in asset values.
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Appendix 2: Numerical solution of the value function and run threshold

This appendix describes the algorithm we use to solve numerically for the value function

W (x;x�) and the run threshold x�: The solution for W satis�es the HJB equation, value matching

and smooth pasting for W everywhere (including at x = x�), the limit condition limx!1W (x; x�) ;

and the condition W (x�; x�) = 1=R: The algorithm follows the following steps:

1. Guess a value for x�:

2. Compute the solution to the HJB for x � x�; using the analytical solution in Appendix 1.

3. Solve W numerically for x > x�; as follows:

(a) Using the standard method, reduce the order of the ODE by introducing a new variable

Z:

Wx � Z (19)

Zx = Wxx

= �2 [�+ �]
�2

Z

x
+
2�

�2
Z

xW
� 2�
�2
min (1; x)

x2
+

2 (�+ �+ �)

�2
W

x2
� 2�
�2
1

x2
: (20)

(b) Solve analytically forW (x�;x�; A (x�)) andWx (x
�;x�; A (x�)) = Z (x�;x�; A (x�)) ; using

the solutions for W in Appendix 1.

(c) Using the initial conditions in step (b), numerically integrate the system of ODEs in step

(a) for x 2 [x�; x] ; where x is a very large value of x that approximates x =1:

4. Check whether the numerical solution for W (x; x�) is su¢ ciently close to its known limit,

derived in Appendix 1. If so, we have found the equilibrium threshold x�. If not, return to

step 1.
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Appendix 3: Details on SMM estimation

This appendix summarizes the SMM estimation procedure, which closely follows Deangelo,

Deangelo, andWhited (2011). Additional details are in Strebulaev andWhited (2012) and Erickson

and Whited (2012). The goal is to estimate parameters b = (�; �; �; r) by matching a vector of

simulated moments as closely as possible to the corresponding vector of data moments. Let xi denote

a data vector and yik (b) denote a simulated vector from simulation k; where i = 1; :::; n indexes

conduit/week observations and k = 1; :::; K indexes simulations. We use K = 20; Michealides

and Ng (2000) �nd that a sample at least 10 times larger than the empirical sample delivers good

�nite-sample performance. We denote simulated moments as h (yik (b)) and data moments as

h (xi) : All the moments we use, including means and variances, can be expressed as slopes from

OLS regressions. The SMM estimate of b is

bb = argmin
b
gn (b)

0cWngn (b) ; (21)

where

gn (b) = n
�1

nX
i=1

"
h (xi)�

1

K

KX
k=1

h (yik (b))

#
is the di¤erence between data moments and simulated moments, and cWn is a positive de�nite

weighting matrix that converges in probability to a deterministic positive de�nite matrix W: The

e¢ cient weighting matrix is the inverse of the sample covariance matrix of the moments. Since

our 13�13 covariance is estimated with considerable noise, we use only its diagonal blocks when

computing the weighting matrix,34 and we divide the diagonal elements by the number of elements

in each group of moments to apply roughly equal weight to our four sets of moments. For instance,

we divide the elements of cWn corresponding to moments 8 to 13 (the forecasting regressions) by six.

34We use a 2�2 block for moments 1 and 2 (recoveries from runs), a 2�2 block for moments 3 and 4 (volatility
regression), a 3� 3 block for moments 5 to 7 (event time regresion), and three 2�2 blocks for each of the forecasting
regressions.
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The estimator�s asymptotic distribution is

p
n
�bb� b� d�! N

�
0; avar

�bb�� ;
where

avar
�bb� = �1 + 1

K

��
@gn (b)

0

@b
W
@gn (b)

@b0

��1 �
@gn (b)

@b

0
W
W

@gn (b)

@b0

� �
@gn (b)

0

@b
W
@gn (b)

@b0

��1
:

We estimate 
 by GMM while taking into account heteroskedasticity and serial correlation,

which is equivalent to computing heteroskedasticity-robust standard errors from a system of seem-

ingly unrelated OLS regressions. Since our moments are slopes from a system of OLS regressions,

this approach is equivalent to the in�uence-function approach of Erickson and Whited (2000) in the

special case in which observations are independently distributed.35 Since our empirical observations

are not necessarily i.i.d., we estimate 
 while allowing correlation in regression disturbances both

(1) within and across regressions and (2) within and across conduits, as long as observations are near

each other in calendar time. The GMM approach takes into account that di¤erent regressions may

use di¤erent sets of conduit/week observations. We use the eigenvalue method of Rousseeuw and

Molenberghs (1993) to guarantee that b
 is positive de�nite. We adjust parameters�standard errors
for �rst-stage estimation error in parameters � and � using the method of Newey and McFadden

(1994).

35To estimate slope � in regression yi = x0i� + ui; the in�uence function is  i = (X 0X)
�1
xiui; and the

heteroskedasticity-robust GMM or OLS asymptotic covariance of b� is (X 0X)
�1
E [X 0u u0X] (X 0X)

�1
: This covari-

ance equals the covariance from the in�uence-function approach, E
�
 i 

0
i

�
, in the special case where E [uiuj 6=i] = 0.
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Appendix 4: The case of a single creditor

Model setup

All assumptions are the same as in the main model except for the following. There is a single

creditor instead of a continuum of creditors. The debt is priced at each instant t such that an

outside lender is indi¤erent about purchasing the entire debt for DtW
SC
�
yt; Dt; y

SC
�
; where ySC is

the endogenous asset value threshold below which the lender runs. The functionW SC (�) is therefore

the market value per dollar of face value of debt held by a single creditor at time t: Since she lends

the conduit $1 at time zero and exactly breaks even, we must have

$1 = DSC
0 W SC

�
ySC0 ; DSC

0 ; ySC
�
:

As before, we say the lender runs if she does not roll over. This setup leaves the rollover face values

Rt undetermined, because for any given arbitrary dynamics of Dt (which depend on Rt) we can

solve for W SC (�) such that the new lender is always willing to buy the debt for DtW
SC (�). We

assume rollover yields are a function of inverse leverage xt; as in our main model, so we write R (xt).

Hamilton-Jacobi-Bellman equation

As in the main model, the single state variable is xt; inverse leverage. We denote the endogenous

run threshold as xSC : The HJB equation for this problem is

�W SC
�
xt;x

SC
�
= [�� � (R (xt)� 1)] xtW SC

x (�) + �
2

2
x2tW

SC
xx (�) (22)

+�min (1; xt) + ��1fxt�xSCgmin (1; lxt)

�
�
�+ ��1fxt�xSCg

�
W SC (�) + 1fxt�xSCg�:

This HBJ is identical to the one in our main paper (equation 18), except that the running lender

receives a payo¤ � in the run state only.

Proposition 2 If � � 1; the single creditor will never roll over his debt.
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Proof. The creditor�s expected return from rolling over is

Et
�
dW SC

t

�
+ �dt

�
min (xt; 1)�W SC

�
xt;x

SC
��
: (23)

The expected return from running is

Et
�
dW SC

t

�
+ �dt

�
min (xt; 1)�W SC

�
xt;x

SC
��
+ (24)

�dt� ��dt
�
W SC

�
xt;x

SC
�
�min (lxt; 1)

�
:

The second expected return minus the �rst is

�dt� ��dt
�
W SC

�
xt;x

SC
�
�min (lxt; 1)

�
:

This di¤erence is positive if

1� �
�
W SC

�
xt;x

SC
�
�min (lxt; 1)

�
> 0: (25)

Since $1 of face value is worth less than $1 today, we haveW SC
�
xt;x

SC
�
< 1 for all values of xt > 0:

We also have min (lxt; 1) > 0 for all xt > 0: These facts imply that if � � 1 then the inequality in

(25) holds for all feasible values of xt. In other words, the expected return from running exceeds

the expected return from rolling over, so the single creditor will never roll over her debt.

Note that this result does not depend on the assumed process for rollover yields R (xt) :
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Table I: The E¤ect of Flexible Yields on Runs

This table compares the predictions from our model to the predictions of He and Xiong
(2012), denoted HX. Yields change over time in our model, whereas yields are constant in
HX. The columns on the left use HX�s calibrated values: � = 1:5%, �=0.077, � = 55%,
� = 20%, � = 1:5%, y0 = 1:4, � = 10, and � = 5. The columns on the right use estimated
parameter values for the weak-guarantee subsample in Table III. Panel A shows the fraction
of simulated conduits that experience a run in our model within one year, divided by the
corresponding fraction from HX. Panel B shows the run threshold in our model (x�) divided
by the run threshold in HX. Panel C shows the conduit�s initial inverse leverage in our model
(x0) divided by the conduit�s initial inverse leverage in HX; these results are identical out
to two digitis for the three values of r. The parameter r is our model�s cap on yield spreads,
and � is the risk-free rate, so r + � is the capped rollover yield.

Panel A: Ratio of the one-year run probability in our model to that in HX

Using HX parameters Using estimated parameters
HX�s �xed yield: 5% 7% 9% �+ 0:1% �+ 0:3% �+ 0:5%

�r + � = 15% 1.31 3.73 50.64 0.65 1.48 3.61
�r + � = 20% 1.29 3.64 49.08
�r + � = 25% 1.28 3.56 47.65

Panel B: Ratio of the run threshold in our model to that in HX

Using HX parameters Using estimated parameters
HX�s �xed yield: 5% 7% 9% �+ 0:1% �+ 0:3% �+ 0:5%

�r + � = 15% 1.43 1.77 2.29 1.22 1.24 1.26
�r + � = 20% 1.42 1.75 2.28
�r + � = 25% 1.41 1.74 2.26

Panel C: Ratio of initial inverse leverage in our model to that in HX

Using HX parameters Using estimated parameters
HX�s �xed yield: 5% 7% 9% �+ 0:1% �+ 0:3% �+ 0:5%

1.38 1.54 1.70 1.25 1.26 1.27
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Table II: Estimated Jacobian Matrix

This table presents the estimates of the Jacobian matrix for the 13 moment conditions in
our SMM estimation procedure, for the subsample of 90 ABCP conduits in 2007 with SIV
or extendible credit guarantees. Moment 1 is the probability that a conduit experiences a
recovery within 8 weeks of a run�s start. Moments 2 is the average number of days between
the run�s start and recovery, conditional on a recovery occurring within 8 weeks of the
run�s start. Moments 3 and 4 are the intercept and slope from a regression of absolute
changes in yield spreads on the lagged yield spread. Moments 5�7 are the intercept and
slopes from a regression of yield spreads on the number of weeks relative to a run and
the exponent of that same number. Moments 8�13 come from 3 regressions, each of the
indicator 1frun within �weeksg on the current yield spread. The three regressions use �=2,
4, and 8 weeks. Each row of each matrix contains the estimated elasticities of the given
moment with respect to the parameters across its columns. Parameters are estimated
by SMM, which chooses values that minimize the distance between actual and simulated
moments. Section I describes the model used to simulate moments. The number highlihgted
in each row in bold type face corresponds to the moment�s highest elasticity.

Elasticity of moments with respect to

� � �r �

Moments on time between run and recovery (�):
1. Pr[� < 8 weeks] -0.209 -0.106 -0.036 0.075
2. E[� j� � 8 weeks] (in days) -0.104 -0.295 -0.011 0.106

Moments from regression of jrit+1 � ritj on rit:
3. Intercept 0.112 0.106 0.724 -0.758
4. Slope 0.002 -0.307 0.133 0.472

Moments describing yield spreads leading up to runs:
Regression of rit on � [� weeks relative to run] and exp(�)
5. Intercept 0.102 -0.186 0.990 -0.311
6. Slope on � 0.133 -0.149 0.977 -0.870
7. Slope on exp(�) 0.235 -0.548 1.093 -0.118

Regressions of 1frun within � weeksg on yield spread:
8. Intercept (� = 2) 0.023 -0.424 0.243 -0.446
9. Slope (� = 2) -0.030 0.177 -0.055 -0.296
10. Intercept (� = 4) -0.414 0.694 -0.498 -2.562
11. Slope (� = 4 ) 0.028 -0.023 0.057 -0.444
12. Intercept (� = 8) -0.158 0.283 -0.571 -0.344
13. Slope (� = 8) 0.066 -0.067 0.180 -0.097
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Table III: Structural parameter estimates and predicted run thresholds

The �rst two rows provide parameter estimates in the weak-guarantee subsample, which
contains 90 ABCP conduits in 2007 with SIV or extendible credit guarantees. The last two
rows report estimates in the strong-guarantee subsample, which contains 191 conduits in
2007 with full credit or full liquidity guarantees. Columns 2 to 5 report estimated structural
parameters, with standard errors in parentheses. Estimation is done by SMM, which chooses
parameter estimates that minimize the distance between actual and simulated moments.
Section I. describes the model used to simulate moments. Standard errors account for time-
series and cross-sectional autocorrelation, both within and across the 13 moments used in
estimation. Standard errors also include a two-step correction for measurement errors in
parameters � (inverse average debt maturity) and � (inverse asset maturity). The last
column shows the leverage threshold for runs (1=x�) predicted by the model for the given
parameter estimates; the model predicts that runs occur as soon as leverage exceeds this
threshold.

Parameter estimates Predicted
Weakness Asset Cap on leverage
of credit volatility yield spreads Asset threshold

Subsample guarantee (% per year) (b.p. per year) liquidity for runs (%)
� � r � 1=x�

Weak guarantees 0.449 4.30 59.8 0.920 92.0
(0.133) (0.10) (6.7) (0.032)

Strong guarantees 0.141 3.54 36.0 0.968 97.1
(0.045) (0.07) (7.0) (0.045)

56



56



T
ab
le

IV
:
M
om

en
ts
fr
om

S
M
M
es
ti
m
at
io
n

T
hi
s
ta
bl
e
sh
ow
s
th
e
13
m
om
en
ts
us
ed
in
SM
M
es
ti
m
at
io
n.
T
he
�r
st
(l
as
t)
fo
ur
co
lu
m
ns
sh
ow

m
om
en
ts
fo
r
th
e
w
ea
k-
(s
tr
on
g-
)

gu
ar
an
te
e
su
bs
am
pl
e,
w
hi
ch
co
nt
ai
ns
90
co
nd
ui
ts
w
it
h
ex
te
nd
ib
le
or
SI
V
cr
ed
it
gu
ar
an
te
es
(1
91
co
nd
ui
ts
w
it
h
fu
ll
cr
ed
it
or
fu
ll

liq
ui
di
ty
gu
ar
an
te
es
).
Si
m
ul
at
ed
m
om
en
ts
ar
e
co
m
pu
te
d
us
in
g
th
e
pa
ra
m
et
er
es
ti
m
at
es
in
T
ab
le
II
I.
M
om
en
t
1
is
th
e
pr
ob
ab
ili
ty

th
at
a
co
nd
ui
t
re
co
ve
rs
w
it
hi
n
8
w
ee
ks
of
a
ru
n�
s
st
ar
t.
M
om
en
t
2
is
th
e
av
er
ag
e
nu
m
b
er
of
da
ys
un
ti
l
th
e
re
co
ve
ry
,
pr
ov
id
ed

it
oc
cu
rs
w
it
hi
n
8
w
ee
ks
of
th
e
ru
n�
s
st
ar
t.
M
om
en
ts
3
an
d
4
ar
e
th
e
in
te
rc
ep
t
an
d
sl
op
e
fr
om

a
re
gr
es
si
on
of
ab
so
lu
te
ch
an
ge
s

in
yi
el
d
sp
re
ad
s
on
th
e
la
gg
ed
yi
el
d
sp
re
ad
.
M
om
en
ts
5
to
7
ar
e
th
e
in
te
rc
ep
t
an
d
sl
op
es
fr
om

a
re
gr
es
si
on
of
yi
el
d
sp
re
ad
s
on

th
e
nu
m
b
er
of
w
ee
ks
re
la
ti
ve
to
a
ru
n
an
d
it
s
ex
p
on
en
ti
al
.
M
om
en
ts
8
to
13
co
m
e
fr
om

3
re
gr
es
si
on
s,
ea
ch
of
th
e
in
di
ca
to
r

1
fr
u
n
w
it
h
in
�
w
ee
ks
g
on
th
e
cu
rr
en
t
yi
el
d
sp
re
ad
,
w
he
re
�
=
2,
4,
an
d
8
w
ee
ks
.
T
he
m
om
en
t
co
nd
it
io
n
t-
st
at
is
ti
c
te
st
s
w
he
th
er
th
e

ac
tu
al
an
d
si
m
ul
at
ed
m
om
en
ts
ar
e
eq
ua
l.
T
he

J
-t
es
t
is
th
e
�
2
te
st
fo
r
th
e
m
od
el
�s
ov
er
id
en
ti
fy
in
g
re
st
ri
ct
io
ns
.

W
ea
k-
gu
ar
an
te
e
su
bs
am
pl
e

St
ro
ng
-g
ua
ra
nt
ee
su
bs
am
pl
e

Si
m
ul
at
ed

M
om
en
t

Si
m
ul
at
ed

M
om
en
t

A
ct
ua
l
m
om
en
ts

m
om
en
ts

co
nd
it
io
n

A
ct
ua
l
m
om
en
ts

m
om
en
ts

co
nd
it
io
n

E
st
im
at
e

St
d.
E
rr
.

E
st
im
at
e

t-
st
at
.

E
st
im
at
e

St
d.
E
rr
.

E
st
im
at
e

t-
st
at
.

M
om
en
ts
on
ti
m
e
b
et
w
ee
n
ru
n
an
d
re
co
ve
ry
(�
):

1.
P
rf
�
<
8
w
ee
ks
g

0.
45
1

0.
05
4

0.
51
3

-1
.1
2

0.
61
3

0.
06
0

0.
61
5

-0
.0
4

2.
E
[�
j�
�
8
w
ee
k
sg
(i
n
da
ys
)

17
.1

1.
4

15
.4

1.
16

17
.4

0.
7

17
.4

0.
04

M
om
en
ts
fr
om

re
gr
es
si
on
of
jr
it
+
1
�
ri
tj
on

r i
t:

3.
In
te
rc
ep
t

0.
00
11

0.
00
06

0.
00
04

1.
21

0.
00
09

0.
00
04

0.
00
03

1.
58

4.
Sl
op
e

0.
10
8

0.
07
8

0.
22
3

-1
.4
8

0.
12
8

0.
06
0

0.
20
5

-1
.2
9

M
om
en
ts
de
sc
ri
bi
ng
yi
el
d
sp
re
ad
s
le
ad
in
g
up
to
ru
ns
:

R
eg
re
ss
io
n
of
r i
t
on

�
[�
w
ee
ks
re
la
ti
ve
to
ru
n]
an
d
ex
p
(�
)

5.
In
te
rc
ep
t

0.
00
53
8

0.
00
19
0

0.
00
24
8

1.
52

0.
00
34
7

0.
00
13
0

0.
00
15
7

1.
47

6.
Sl
op
e
on

�
0.
00
03
3

0.
00
01
2

0.
00
01
2

1.
80

0.
00
01
5

0.
00
01
0

0.
00
00
7

0.
85

7.
Sl
op
e
on
ex
p
(�
)

0.
00
16
8

0.
00
26
8

0.
00
46
7

-1
.1
2

0.
00
52
5

0.
00
17
8

0.
00
26
0

1.
49

M
om
en
ts
fr
om

re
gr
es
si
on
s
of
1
fr
u
n
w
it
h
in
�
w
ee
ks
g
on
yi
el
d
sp
re
ad
s

8.
In
te
rc
ep
t
(�
=
2)

-0
.0
03

0.
03
6

-0
.1
46

3.
94

-0
.0
01

0.
01
2

-0
.1
58

9.
64

9.
Sl
op
e
(�
=
2

0.
31
7

0.
08
7

0.
71
6

-4
.5
4

0.
10
4

0.
04
0

0.
75
5

-1
4.
93

10
.
In
te
rc
ep
t
(�
=
4)

0.
12
1

0.
05
5

-0
.0
44

2.
97

0.
01
6

0.
01
3

0.
00
0

0.
93

11
.
Sl
op
e
(�
=
4)

0.
36
4

0.
04
5

0.
75
8

-8
.4
6

0.
15
5

0.
04
1

0.
71
1

-1
2.
37

12
.
In
te
rc
ep
t
(�
=
8)

0.
29
7

0.
09
5

0.
14
9

1.
55

0.
06
7

0.
02
8

0.
21
7

-4
.8
9

13
.
Sl
op
e
(�
=
8)

0.
41
3

0.
07
3

0.
65
5

-3
.2
4

0.
16
5

0.
03
4

0.
56
1

-1
0.
02

T
es
t
of
ov
er
-i
de
nt
if
yi
ng
re
st
ri
ct
io
ns
:

J
-t
es
t

1,
11
1

6,
77
1

p
-v
al
ue

0.
00
0

0.
00
0

57



Table V: The change in asset value required to trigger a run

This table shows simulated changes in asset value preceding runs. We simulate conduits
for one year using parameter estimates for the weak-guarantee subsample (Table III). For
these parameter values, runs occur as soon as leverage exceeds 0.920. Panel A contains the
simulations�assumed initial leverage, which equals the asset�s fundamental value y0 divided
by the initial face value of debt D0. Panel B shows statistics on the percentage change in
asset value yt between the simulation�s start and the run�s start, for those conduits that
experience a run.

Panel A: Initial leverage (D0=y0)

0.85 0.86 0.87 0.88 0.89 0.9 0.91

Panel B: Percent change in asset value preceding a run

Mean -4.39 -3.53 -2.69 -1.93 -1.26 -0.68 -0.26
25th percentile -4.97 -4.22 -3.53 -2.85 -2.24 -1.62 -0.95

Median -4.28 -3.47 -2.70 -2.04 -1.50 -1.05 -0.67
75th percentile -3.70 -2.76 -1.85 -1.04 -0.42 0.00 0.02
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Figure 1:
This �gure shows the time series of the prices for several as-
set categories in the portfolio of ABCP conduits 2007 (solid
lines), as well as the proportion of ABCP programs experienc-
ing runs in a given week (dashed line). We normalize prices to
$1 on January 1. The ABX index of mortgage securities is an
average across tranches (from BBB- to AAA) of the ABX.HE
indexes for MBS originated in the �rst half of 2006. Data for
the remaining asset categories are from Barclays indexes. "US
securitized" is an aggregate of U.S. asset-backed securities, com-
mercial mortgage-backed securities, and other mortgage-backed
securities; this index proxies for the ambiguous "Securities" cat-
egory, which makes up 11% of conduit assets in 2007. Portfolio
weights in the legend are from �The ABC�s of ABCP,�an unpub-
lished document from Societe Generale. Data for the proportion
of runs are from the DTCC data base on all issues by ABCP
programs, where a run is de�ned as in Covitz, Liang, and Suarez
(2012): an ABCP program experiences a run in a given week if
either (1) more than 10% of the program�s outstanding paper is
scheduled to mature, yet the program does not issue new paper;
or (2) the program was in a run the previous week and it does
not issue new paper in the current week.
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Figure 2:
This �gure shows the simulated paths of two conduits with the
same initial leverage and parameter values. The top panel shows
simulated values of xt, inverse leverage. The dotted line denotes
the run threshold. The bottom panel shows simulated paths
of annual yields at rollover for the same two programs. The
risk-free rate is 5% and the cap on the rollover yield is 20%.
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Figure 3: This �gure shows the relation between yield spread
volatility and the yield spread level. The vertical axis is the
absolute value of one-week changes in yield spread. The hori-
zontal axis is the lagged yield spread. The left-hand (right-hand)
panels show results in actual (simulated) data. The top panels
show results for the weak-guarantee subsample, which contains
the 90 conduits in 2007 with extendible or SIV guarantees. The
bottom panels show results for the strong-guarantee subsample,
which contains the 191 conduits in 2007 with full credit or full
liquidity credit guarantees. The red points show local averages,
and the black line shows predicted values from a regression of
absolute changes in yield spreads on the lagged yield spread.
The intercept and slope from this regression provide two of the
13 moments used in the SMM estimation. The reason there
are fewer red points in the bottom-right panel compared to the
bottom-left panel is that the estimated cap on yield spread is
36 basis points in the strong-guarantee subsample; all simulated
spreads are therefore � 36 bp, whereas there are a few spreads
> 36 bp in the actual data.
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Figure 4: This �gure plots average yield spreads in event time
leading up to runs in event week zero. The left-hand (right-
hand) panels show results in actual (simulated) data. The top
panels show results from the weak-guarantee subsample, which
contains the 90 conduits in 2007 with extendible or SIV guar-
antees. The bottom panels show results for strong-guarantee
subsample, which contains the 191 conduits in 2007 with full
credit or full liquidity credit guarantees. The red points show
the average yield spread in each week. The solid black line shows
the predicted values from the regression of yield spreads on the
number of weeks relative to the run and the exponent of that
same number. The intercept and two slopes from this regression
provide three of the 13 moments used in SMM estimation. The
black line starts at week -12 because the regression only uses
data from weeks -12 to -1.
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Figure 5: This �gure shows the forecasting relation between
yield spreads and runs in the weak-guarantee subsample, which
contains 90 conduits in 2007 with extendible or SIV credit guar-
antees. The top panels show the relationship using actual data,
and the bottom panels show the relationship using data sim-
ulated from the model with the parameter estimates in Table
III. The vertical axis is the probability of a run within � weeks
of the current conduit/week observation. The horizontal axis is
the normalized yield, de�ned as the current yield spread divided
by maxr, a proxy for the conduit�s cap on yield spreads. The
left-hand panels show local averages of run probabilities. The
right-hand panels show the predicted values from a regression of
1frun within �weeksg on the normalized yield spread. We estimate
this regression for forecasting horizons of �=2, 4, and 8 weeks.
The intercepts and slopes from these regressions provide six of
the 13 moments used in SMM estimation.
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Figure 6: This �gure shows the forecasting relation between
yield spreads and runs in the strong-guarantee subsample, which
contains the 191 conduits in 2007 with full credit or full liquidity
guarantees. De�nitions are the same as in Figure 5.
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Figure 7:
This �gure shows the sensitivity of run probabilities to model
parameters. Each panel plots the simulated three-month run
probability as a function of parameter values. In each panel we
set parameter values to their estimates for the weak-guarantee
subsample (Table III), then we vary the parameter indicated on
the panel�s horizontal axis. The top left panel varies initial lever-
age, which serves as each simulation�s initial condition. The two
vertical dashed blue lines in the top left panel indicate the values
of initial leverage we use as initial conditions in the remaining
panels. In the remaining panels, the vertical bold blue line indi-
cates the parameter�s estimated value. The solid (dashed-dot)
line shows run probabilities when initial leverage is at the high
(low) level indicated in the top left panel. E[guarantee life],
which equals 1=(��), is the average number of years the guar-
antee survives during a run before failing. E[debt maturity] is
in years. Asset growth and volatility, the discount rate, and the
cap on yield spread are in units of fraction per year.
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Figure 8:
Panel A plots the relation between the �rm�s current lever-
age and the probability of a run within the next 3, 6, and 12
months. Panel B shows the relation between the �rm�s current
yield spread and the probability of a future run. Results are
from model simulations using the parameter estimates for the
weak-guarantee subsample, which contains the 90 ABCP con-
duits with SIV or extendible guarantees (Table III).
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