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Abstract

We study a pure exchange economy populated by three types of agents: constrained

agents who are subject to a risk constraint, unconstrained agents who are only sub-

ject to a standard nonnegative wealth constraint, and arbitrageurs who, in addition

to being unconstrained, may incur transitory losses that are bounded by a state-

dependent credit limit. This uncollateralized credit facility is valuable when there

are bubbles, which arise endogenously due to the presence of constrained agents.

Since arbitrageurs are required to hold less collateral than other agents, their pres-

ence implies a reduction in the value of the stock’s collateral services and therefore

a decrease in the relative size of the bubble. In contrast to previous results in the

literature, we show that the presence of risky arbitrage trading has an impact on

the stock price level and makes it more volatile than the underlying fundamental,

thereby generating the leverage effect.
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1 Introduction

The existence of asset pricing bubbles in equilibrium models with continuous trading is

closely related to the question: if the security is overpriced, why is its price not corrected

by short sales?. The answer has to do with trading frictions that limit the ability of

investors to profit from the arbitrage opportunity that a bubble provides. Wealth con-

straints1 are one important example of such frictions since they are effectively bounds

on credit. These constraints remove downward selling pressure on mispriced assets by

limiting the scale at which an investor can sustain a strategy that would exploit bubbles,2

hence their economic significance. Our goal in this paper is to characterize the role of

wealth constraints in an equilibrium model with bubbles. In particular, we explore when

and how they improve the ability of investors to exploit arbitrage strategies and analyze

the impact of these strategies on prices.

We answer these questions by building an exchange economy with endogenous mispric-

ing that nests Hugonnier (2012). This model considers a riskless asset in zero net supply,

a dividend paying risky asset in positive supply and two types of price-taking agents

endowed with assets. Constrained agents are subject to portfolio constraints which force

them to keep a long position in the riskless asset, while unconstrained agents are free

to choose the composition of their portfolio. Both types of agents face a standard non-

negativity constraint on wealth. In agreement with intuition, the interest rate decreases

and the Sharpe ratio increases with respect to a frictionless economy, yet the stock and

the riskless asset may contain bubbles in order to incite unconstrained agents to hold

positions that are compatible with market clearing.3

We add a third class of investors: arbitrageurs. These agents do not face portfolio

constraints and benefit from credit conditions that allow them to withstand transitory

1Wealth constraints were proposed by Harrison and Kreps (1979) and Dybvig and Huang (1988) as a
mechanism to preclude doubling strategies. Doubling strategies are essentially sequences of bets that win
for sure in finite time by doubling up after a loss. A model of continuous trading in which agents prefer
more to less requires some constraint to make doubling strategies infeasible, for otherwise there can be
no equilibrium. Wealth constraints are widely used in continuous-trade models, but are also introduced
in discrete-time, infinite-horizon general equilibrium models (see e.g., Kocherlakota (1992), Magill and
Quinzii (1994) among others).

2For example, an arbitrage strategy that exploits a bubble involves short selling the higher-cost
asset and buying the lower-cost replicating portfolio, while investing the time zero proceeds during the
convergence trade. This strategy requires no initial wealth and provides positive payoffs, but may not
be feasible at all scales due to the presence of wealth constraints.

3The presence of bubbles in exchange economies with portfolio constraints is reminiscent of Caballero
(2006) (see also Caballero and Krishnamurthy (2009)), who points to asset shortages and (portfolio)
imbalances as a source of bubbles. These two features correspond in our model to fixed supply in
securities and portfolio constraints, respectively.
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marked-to-market losses, i.e., states with negative net worth. Trading in these states

may be sustained through credit implicitly extended by the other agents in the economy.4

Throughout, we assume all agents have logarithmic preferences.

In our main example, we find that the ability of arbitrageurs to exploit bubbles im-

prove when credit depends on the size of the market, that is, when it increases in times

where the stock market is high and dries up in bad times.5 In particular, we show that

arbitrageurs are able to reap arbitrage profits from the market and consume even if they

do no have any initial capital. The impact of these strategies on equilibrium prices is

summarized next.

First, the mispricing on both securities decreases with improved credit conditions,

to the extent that the bubble on the stock vanishes in the limit of infinite credit. In

particular, we show that as the size of the credit facility increases, the stock price level

decreases due to the fact that the arbitrageur may hold a class of arbitrage strategies

which require less collateral, and hence, in equilibrium, it implies a reduction in the

value of collateral services provided by the stock. The reduction on the stock level also

decreases the bubble on the riskless asset.6

Second, in contrast with pure exchange economies that feature multiple agents with

homogenous logarithmic utility and frictions,7 the stock volatility is higher than the

volatility of dividends in all states. This follows from the fact that the volatility of the

price dividend ratio, which determines the stock volatility in excess of the volatility of

dividends, is positive as a result of the arbitrageur’s trading activity. We also show that

the volatility level is increasing in the size of the credit facility.

Third, the equity premium and the stock volatility are higher in bad times, generating

the leverage effect, i.e., the well-established fact according to which volatility increases

when the stock price falls. The model generates also a low interest rate. These results

are of interest because they show how, by introducing heterogeneity in investors’ credit

conditions, a stylized model with logarithmic preferences and portfolio constraints may

help in explaining empirical regularities.

4Unlike Shleifer and Vishny (1997), there are no outside investors or agency conflicts in the model, yet
we build on the idea of the limited effectiveness of arbitrageurs in bringing prices closer to fundamental
values due to credit frictions. See Gromb and Vayanos (2010) for a recent survey of this literature.

5We also present examples where an equilibrium may fail to exist or may be invariant to the compo-
sition of the credit facility.

6This result sheds light on Fahri and Tirole (2010) who question whether authorities could regulate
the likelihood and the size of bubbles by relaxing securitization (or collateralizability) standards.

7See e.g., Detemple and Murthy (1997), Basak and Cuoco (1998) and Basak and Croitoru (2000)
among others.
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We also explore the impact of arbitrageurs on welfare. We show that both con-

strained and unconstrained agents can be made worse off, as the arbitrageur’s trading

activity affects prices in a way that may be unfavorable to them. In particular, improved

credit conditions reduce both the unconstrained and constrained agents’ initial wealth,

if endowed with shares of the stock, and increase the stock volatility. The latter effect

worsens the stock’s ‘collateral quality’ and affects negatively the portfolio mix held by

the unconstrained agent.

Our work is related to various strands of literature. There are few papers where arbi-

trage opportunities arise endogenously in equilibrium. For example, Gromb and Vayanos

(2002) and Basak and Croitoru (2000) study economies where all agents are subject to

portfolio constraints and, as a result, the ability of investors to benefit from the mispriced

assets is limited. If these constraints are lifted for some agents, then these agents can scale

their position to an arbitrary size and the presence of mispriced assets becomes inconsis-

tent with the existence of an equilibrium. In addition, Gromb and Vayanos (2002) focus

on the impact of arbitrageurs on welfare. They examine a different form of constraints

which induce segmented markets. Without the arbitrageur, there is no trade across mar-

kets; in the presence of the arbitrageur, who acts as an intermediary by running riskless

arbitrages, Pareto-improving trade occurs. In contrast, the arbitrageur in our model does

not alleviate the portfolio constraints, quite the contrary, his trading activity may affect

negatively the welfare of both unconstrained and constrained agents. Basak and Croitoru

(2006) build a production economy version of Basak and Croitoru (2000), and introduce

a risk neutral arbitrageur with position constraints and zero net wealth whose trading ac-

tivity brings prices closer to their fundamental values through costless and riskless trades.

In doing so, the arbitrageur always takes the maximum position allowed by the portfolio

constraint. Our economy features a risk averse arbitrageur that also starts from a zero

wealth position, however, the arbitrageur accumulates capital because not all arbitrage

profits are consumed and importantly, his arbitrage trades are risky, in the sense that

they may involve temporary losses prior to closure. Moreover, the production technology

in Basak and Croitoru (2006) determines the stock price dynamics exogenously, rendering

a flat stock volatility. Our model shows that risky arbitrage strategies have important

implications on the price dynamics, which are fully endogenous.

The key contributions in the literature of equilibrium asset pricing bubbles in mod-

els with continuous trading have studied primarily nonnegativity constraints on wealth.

Loewenstein and Willard (2000) show that, in complete-market frictionless economies,
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bubbles may exist on zero net supply securities, such as options and futures, but not on

positive net supply securities such as stocks. Hugonnier (2012) shows that the presence of

portfolio constraints may generate equilibrium pricing bubbles also on positive net supply

securities. Prieto (2012) extends Hugonnier (2012) in a setting with heterogeneity in risk

aversion and beliefs across agents. In addition to these papers, there are studies that

analyze, mostly in partial equilibrium, the properties of asset pricing bubbles. Cox and

Hobson (2005) and Heston, Loewenstein, and Willard (2007) study bubbles on the price

of derivatives written on the stock and show that put-call parity might not hold. Jarrow,

Protter, and Shimbo (2010) introduce regime shifts to show that a bubble on the stock

can burst and be born in models with incomplete markets. An important difference with

respect to these studies lies in the fact that they assume the existence of a risk neutral

probability measure. This will not be the case in the economy analyzed in this paper,

since the presence of a bubble on the riskless asset is equivalent to the non existence of

a risk neutral probability measure.

The remainder of the paper is structured as follows. Section 2 present the main

assumptions about the economy, the traded assets and the agents. Section 3 solves for

the unique equilibrium in the economy. Section 4 discusses the main implications and

insights of the model. Section 5 shows that similar asset pricing implications are obtained

for an alternative credit facility and analyzes the implications of a sudden reversal in credit

conditions. Section 6 concludes. All proofs are gathered in the Appendix.

2 The model

2.1 Information structure

We consider a continuous time economy on an infinite horizon and assume that the

uncertainty in the economy is represented by a probability space (Ω,F ,P) that carries

a standard Brownian motion Zt. All random processes are assumed to be adapted with

respect to the augmentation of the filtration F = (Ft)t≥0 generated by the Brownian

motion, and all statements involving random quantities are understood to hold either

almost surely or almost everywhere depending on the context.
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2.2 Securities markets

Agents trade in two securities: a locally riskless savings account in zero net supply and

one risky asset, or stock, in positive supply of one unit. The price of the riskless asset

evolves according to

S0t = 1 +

∫ t

0

S0urudu

for some short rate process r ∈ R that is to be determined in equilibrium. On the other

hand, the stock is a claim to a dividend process δ that evolves according to a geometric

Brownian motion,

δt = δ0 +

∫ t

0

δu(µδdu+ σδdZu)

for some constant drift µδ and some constant volatility σδ > 0. The stock price process

is denoted by S and evolves according to

St +

∫ t

0

δudu = S0 +

∫ t

0

Su(µudu+ σudZu)

for some initial value S0 > 0, some drift µ ∈ R and some volatility σ ∈ R processes which

are to be determined in equilibrium.

2.3 Trading strategies

A trading strategy is a pair of processes (π;φ) where π represents the amount invested

in the stock while φ represents the amount invested in the riskless asset. A trading

strategy is said to be self-financing given initial wealth w and consumption rate c if the

corresponding wealth process

Wt = Wt(π;φ) ≡ φt + πt (1)

satisfies the dynamic budget constraint

Wt = w +

∫ t

0

(φuru + πuµu − cu) du+

∫ t

0

πuσudZu. (2)

Implicit in the definition is the requirement that the trading strategy be such that the

above stochastic integrals are well-defined.
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2.4 Agents

The economy is populated by three agents indexed by k = 1, 2, 3. The preferences of

agent k are represented by

Uk(c) ≡ E

[∫ ∞
0

e−ρt log(ct)dt

]
for some subjective discount rate ρ > 0 and we let wk ≡ βk + αkS0 denote the initial

wealth of agent k computed at equilibrium prices.

The three agents in the economy have homogenous preferences and beliefs but dif-

fer in their trading opportunities. Agent 1 is free to choose any self-financing strategy

whose wealth is nonnegative at all times, and we will refer to him as the unconstrained

agent. Agent 2, to whom we will refer as the constrained agent, is subject to the same

requirement as agent 1, but must in addition choose a strategy that satisfies

πt ∈ Ct ≡ {π ∈ R : |σtπ| ≤ (1− ε)σδWt},

for some fixed constant ε ∈ [0, 1]. This constraint can be thought of as a stock market

participation constraint, that limits the amount of risk the agent can take while trading.

In particular, if σt ≥ σδ (which we will show is the case in equilibrium) then this constraint

forces agent 2 to invest a strictly positive fraction of his wealth in the money market

account and thereby introduces an imbalance that ultimately generates bubbles. This

constraint is also a special case of the general risk constraints in Cuoco, He, and Isaenko

(2008), and is also studied in Gârleanu and Pedersen (2007) and Prieto (2012) as a

constraint on conditional value-at-risk.

Agent 3 is also free to choose any self-financing strategy but, in contrast to the two

other agents, he is not required to maintain nonnegative wealth at all times. Instead,

this agent is allowed to run short term deficits provided that

W3t = φ3t + π3t ≥ −ψSt, (3)

for some exogenously fixed constant ψ ≥ 0. This agent should be thought of as an

arbitrageur whose funding liquidity conditions are determined by the parameter ψ. The

fact that the amount of credit available to this arbitrageur increases with the size of the

market captures in a simple way the observation that liquidity improves in times where

the stock market is high and dries up in bad times.
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Since agent 3 can continue trading in states of negative wealth, the solvency constraint

(3) allows for excess borrowing. Trades in these states may be considered uncollateralized

as agent 3 does not have enough assets to cover his liabilities in case of instantaneous

liquidation. Note however that, given the assumed preferences, he will never willingly

stop servicing debt or risk a rollover freeze of short-term debt. In other words, agent 3 is

balance-sheet insolvent but not cash-flow insolvent in these states.

To emphasize the interpretation of agent 3 as an arbitrageur, we will from now on

assume that α3 = β3 = 0 so that his initial wealth is zero. This in turn implies that the

initial endowments of the other agents can be summarized by the pair (α, β) = (α2, β2)

that describes the initial portfolio of the constrained agent. In what follows, we assume

α ∈ [0, 1), so that both agents 1 and 2 start with a long position in the stock.

Remark 1. Since w3 = 0, agent 3 can be constructed as a representative arbitrageur that

aggregates a finite set of heterogenous arbitrageurs with initial wealth zero, logarithmic

preferences and solvency constraint given by Wat ≥ −ψaSt with
∑

a ψa = ψ. As a result,

a change in the parameter ψ can be interpreted as either a change in credit conditions or

as a change in the mass of arbitrageurs present in the economy.

2.5 Definition of equilibrium

The concept of equilibrium that we use is similar to that of equilibrium of plans, prices

and expectations introduced by Radner (1972):

Definition 1. An equilibrium is a pair of security price processes (S, S0) and a set

{ck, (πk;φk)}3k=1 of consumption plans and trading strategies such that:

1. Given (S, S0) the consumption plan ck maximizes Uk over the feasible set of agent

k and is financed by the trading strategy (πk, φk).

2. Markets clear: φ1 + φ2 + φ3 = 0, π1 + π2 + π3 = S and c1 + c2 + c3 = δ.

An equilibrium is said to have arbitrage activity if the consumption plan of the arbitrageur

is not identically zero.

Since the arbitrageur starts from zero wealth it might be that the set of consumption

plans that he can finance is empty. In such cases, his consumption and optimal portfolio

are set to zero and the equilibrium only involves the two other agents. To determine

conditions under which the arbitrageur participates it is necessary to characterize his

feasible set. This is the issue to which we now turn.
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2.6 Feasible sets and bubbles

Let (S, S0) denote the securities prices in a given equilibrium and assume that there are

no trivial arbitrage opportunities for otherwise the market could not be in equilibrium.

As is well-known (see e.g., Duffie (2001)), this assumption implies that

µt = rt + σtθt.

for some process θ such that
∫ t
0
θ2udu <∞ for all t ≥ 0. This process is referred to as the

market price of risk and is uniquely defined on the set where the stock volatility is non

zero. Now consider the state price density defined by

ξt =
1

S0t

exp

(
−
∫ t

0

θudZu −
1

2

∫ t

0

|θu|2du
)
. (4)

The following proposition shows that the ratio ξt,u = ξu/ξt can be used as a pricing kernel

in order to characterize the feasible sets of agents 1 and 3, and allows to determine the

conditions under which the arbitrageur participates in the market.

Proposition 1. A consumption plan c is feasible for agent k ∈ {1, 3} if and only if

E

[∫ ∞
0

ξtctdt

]
≤ wk + 1{k=3}ψ(S0 − F0), (5)

where

Ft ≡ Et

[∫ ∞
t

ξt,uδudu

]
gives the minimal amount that agent 1 needs to hold at time t ≥ 0 to replicate the

dividends of the stock while maintaining nonnegative wealth. In particular, the feasible

set of agent 3 is non empty if and only if ψ(S0 − F0) > 0.

Following the rational asset pricing bubble literature (see Santos and Woodford (1997)

and Loewenstein and Willard (2000) among others) we refer to Ft as the fundamental

value of the stock because it is the value attributed to the stock by the unconstrained

agent; and to

Bt ≡ St − Ft = St − Et
[∫ ∞

t

ξt,uδudu

]
as the bubble on its price. Using this terminology, Proposition 1 shows that the feasible
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set of the arbitrageur is empty unless two conditions are satisfied: there needs to be a

bubble on the stock and the agent must have access to uncollateralized credit in the sense

that ψ > 0. The intuition behind this result is clear: since the agent has no initial wealth

he can only consume strictly positive amounts if there are arbitrages in the market that

he is able to exploit, at least to a limited extent.

At first glance, it might seem that a stock bubble should be inconsistent with both

optimal choice and the existence of an equilibrium since it implies that two assets with

the same cash flows have different prices. The reason why this is not so is that, due to

wealth constraints, bubbles only constitute limited arbitrage opportunities. In order to

see this, assume the stock has a bubble and consider the textbook arbitrage strategy that

sells short x > 0 units of the stock, buys the portfolio which replicates the corresponding

dividends and invests the remaining strictly positive amount in the riskless asset until

some fixed date τ . The wealth process of this strategy is

At,τ (x) = x(Ft(τ)− St) + xS0t(F0(τ)− S0) = x(B0(τ)S0t −Bt(τ)) (6)

where

Ft(τ) ≡ Et

[∫ τ

t

ξt,uδudu+ ξt,τSτ

]
gives the fundamental value of the stock over the time interval [t, τ ], and

Bt(τ) ≡ St − Ft(τ) (7)

denotes the corresponding finite horizon bubble. The portfolio in (6) requires no initial

investment and has terminal value Aτ,τ (x) = xB0(τ)S0τ > 0 so it does constitute an

arbitrage opportunity in the usual sense. But this arbitrage opportunity is risky because

is entails the possibility of interim losses and, therefore, cannot be implemented to an

arbitrary scale by the agents in the economy. Indeed, the arbitrageur can only implement

this strategy up to size ψ because otherwise the wealth process At,τ (x) would not satisfy

the solvency constraint (3). Similarly, the unconstrained agent can only implement this

strategy if he holds a sufficient amount of collateral in the form of cash or securities. For

example, if he holds x > 0 units of the stock then he can implement the arbitrage trade

only up to size x since the corresponding wealth process At,τ (x) + xSt is nonnegative.

These simple arguments show that in the presence of wealth constraints bubble only
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constitute limited arbitrage opportunities and implies that they are compatible with

both individual optimality and the existence of an equilibrium.

The above discussion has focused on the stock but bubbles may be defined on any

security, including the money market account. Indeed, over the finite time interval [0, τ ]

the money market account can be viewed as a derivative that pays a single lump dividend

equal to S0τ at time τ . The fundamental value of such a security is

F0t(τ) = Et [ξt,τS0τ ]

whereas its market value is simply S0t, and this naturally leads to defining the finite

horizon bubble on the riskless asset as

B0t(τ) ≡ S0t − F0t(τ) = S0t

(
1− Et

[
ξt,τ

S0τ

S0t

])
. (8)

As was the case for stocks, bubbles on the riskless asset are consistent with both optimal

choice and the existence of an equilibrium in our economy. In fact, we show below that

when constrained agents are present in the economy bubbles on both the stocks and the

riskless asset are necessary for markets to clear.

Remark 2. Equation (8) shows that the riskless asset has a bubble over [0, τ ] if and only

if the process Mt ≡ S0tξt satisfies E[Mτ ] < M0 = 1. Since the economy is driven by a

single source of risk this process is the unique candidate for the density of the risk-neutral

probability measure and it follows that the existence of a bubble on the riskless asset is

equivalent to the non existence of the risk-neutral probability measure. See Loewenstein

and Willard (2000) and Heston, Loewenstein, and Willard (2007).

3 Equilibrium

3.1 Individual optimality

Combining Proposition 1 with well-known results on logarithmic utility maximization

leads to the following characterization of optimal policies.

Proposition 2. Assume that equilibrium prices are such that Bt 6= 0. Then the optimal

consumption and trading strategies of the three agents are given by

ckt = ρ
(
Wkt + 1{k=3}ψBt

)
(9)
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and

π1t = (θt/σt)W1t, (10)

π2t = (θt/σt)κtW2t, (11)

π3t = (θt/σt)(W3t + ψBt)− ψ(ΣB
t /σt), (12)

where

κt = min

(
1;

(1− ε)σδ
|θt|

)
, (13)

and the process ΣB
t denotes the diffusion coefficient of the process Bt.

The solution for the unconstrained agent 1 is standard given logarithmic preferences.

Indeed, this agent invests in an instantaneously mean-variance efficient portfolio and has

a constant marginal propensity to consume equal to his discount rate. The solution for

the constrained agent 2 follows from the results of Cvitanić and Karatzas (1992) and

shows that the constraint binds when the market price of risk is high. This is intuitive:

because agent 2 has logarithmic preferences we know that without the constraint he would

invest in proportion to the market of risk and the conclusion follows by noting that the

portfolio constraint limits the amount of risk he is allowed to take.

The solution for the arbitrageur is novel to this paper and illustrates how this agent

is able to reap arbitrage profits, and thereby consume, despite the fact that he has

no initial capital. Specifically, equation (12) shows that the optimal strategy of the

arbitrageur consists in shorting ψ units of the stock, buying ψ units of the portfolio that

replicates the stock dividends, and then investing the strictly positive proceeds into the

same mean-variance efficient portfolio as agent 1. This strategy is only admissible because

the arbitrageur is not required to maintain nonnegative wealth and allows him to increase

his implicit wealth from W3t to W3t +ψBt = e−ρtψB0/ξt ≥ 0.8 The optimal consumption

in equation (9) then follows by noting that, since he has logarithmic preferences, the

arbitrageur should optimally consume a constant fraction of his implicit wealth that is

equal to his subjective discount rate.

Remark 3. Interestingly, the optimal policy of the arbitrageur bears a close resemblance

8Note that since W3t +ψSt = ψ(Ft + e−ρtB0/ξt) > 0 the arbitrageur never exhausts his credit limit.
Although of a different nature, this underinvestment result is reminiscent of Liu and Longstaff (2004)
who study the portfolio choice problem of an arbitrageur facing margin constraints and an exogenous
arbitrage opportunity modeled as a Brownian bridge.
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to that of an hypothetical agent with logarithmic utility and no initial wealth who receives

labor income at rate et ≥ 0 in a complete market with state price density ξt. Indeed, the

optimal consumption of such an agent is

ct = ρ(Wt +Ht) = ρe−ρt(H0/ξt)

where the process

Ht = Et

[∫ ∞
t

ξt,ueudu

]
gives the fundamental value of the agent’s future income, and an application of Itô’s

lemma then shows that his optimal trading strategy is

πt = (θt/σt)(Wt +Ht)− (ΣH
t /σt)

where ΣH
t denotes the diffusion coefficient of the process Ht. This solution is isomorphic

to that given in Proposition 2 with one important caveat: instead of arising exogenously

from the agent’s labor income, the process Ht = ψBt in this paper is endogenously

generated by the profits that the arbitrageurs are able to reap from the market.

3.2 Equilibrium price system

To characterize the equilibrium we use a representative agent with stochastic weights

that allows to easily account for the market clearing conditions despite the imperfect risk

sharing induced by the presence of the constrained agent (see Cuoco and He (1994)).9

The utility function of this representative agent is defined by

u (c, γ, λt) ≡ max
c1+c2+c3=c

(log(c1) + λt log(c2) + γ log(c3))

where λt > 0 is an endogenously determined weighting process that encapsulates the

differences across the agents and γ ≥ 0 is a nonnegative constant that determines the

relative weight of arbitrageurs in the economy.

9This construction is very useful as it reduces the search for an equilibrium to the specification
of the weights but one should be cautious with its interpretation because a no-trade equilibrium for
the representative agent cannot be decentralized into an equilibrium for our three agents economy in
general. The reason for this discrepancy is precisely that the equilibrium prices of our economy can
include bubbles whereas those of the representative agent economy cannot.
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Relying on the result of Proposition 2, we have that the first order conditions of

optimality for agents 1 and 3 are given by

e−ρt
ck0
ckt

= ξt, k = 1, 3.

Comparing these to the first order condition of representative agent’s problem shows that

the equilibrium state price density and allocation are given by

ξt = e−ρt
uc (δt, γ, λt)

uc (δ0, γ, λ0)
= e−ρt

δ0(1 + γ + λt)

δt(1 + γ + λ0)
, (14)

and

c2t = stδt,

c1t =
1

1 + γ
(1− st)δt,

c3t = δt − c1t − c2t =
γ

1 + γ
(1− st)δt,

where the process

st ≡
c2t
δt

=
λt

1 + γ + λt
∈ (0, 1) (15)

represents the consumption share of the constrained agent. In order to determine the

dynamics of this process, let us assume that

dst = mtdt+ ntdZt

for some adapted processes m and n. Applying Itô’s lemma to the definition of the state

price density and comparing the result to (4) shows that the market price of risk and the

interest rate are given by

θt = σδ −
nt

1− st
, (16)

and

rt = ρ+ µδ − σ2
δ +

σδnt −mt

1− st
−
(

nt
1− st

)2

. (17)

On other hand, the result of Proposition 2 shows that along the optimal path the wealth

14



of agent 2 is W2t = stδt/ρ. Applying Itô’s lemma to this expression, and comparing the

result with the dynamic budget constraint (2), shows that the drift and volatility of the

consumption share are related by

mt +
n2
t

1− st
= 0,

and that the optimal portfolio of the constrained agent solves

σtπ2t = W2t

(
σδ +

nt
st

)
.

Plugging the expression for the market price of risk into equation (11) and comparing

the result with the above expression shows that(
σδ +

nt
st

)
max

{
1;
|σδ(1− st)− nt|
(1− ε)(1− st)σδ

}
= σδ −

nt
1− st

.

Solving that nonlinear equation gives an explicit expression for the volatility of the con-

sumption share process, and plugging this explicit solution back into equations (16) and

(17), delivers the following characterization of equilibrium.

Proposition 3. In equilibrium, the riskless rate of interest and the market price of risk

are explicitly given by

θt = σδ

(
1 +

εst
1− st

)
, (18)

rt = ρ+ µδ − σδθt = ρ+ µδ − σ2
δ

(
1 +

εst
1− st

)
, (19)

and the consumption share of the constrained agent evolves according to

dst = −stεσδ
(
dZt +

st
1− st

εσδdt

)
(20)

with initial condition s0 = ρw2/δ0.

The above characterization of equilibrium is notable two reasons. First, it follows

from (11), (13) and (18) that the equilibrium portfolio of agent 2 satisfies

σtπ2t = W2t(1− ε)σδ < W2tθt.

This shows that the portfolio constraint binds at all times and it follows that agent 2
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constantly has a positive demand for the riskless asset. This in turn implies that prices

should adjust to entice agents 1 and 3 to borrow and explains why, as shown by (19) and

(18), the interest rate decreases and the market price of risk increases compared to an

unconstrained economy (ε = 0). Second, (20) shows that the consumption share of the

constrained agent is negatively correlated with dividends and therefore tends to decrease

(increase) following sequences of positive (negative) cash flow shocks. The intuition for

this result is clear: by limiting the amount of risk that agent 2 is allowed to take, the

portfolio constraint implies that his consumption is less sensitive to bad shocks but also

limits the extent to which it benefits from sequences of good shocks.

To compute the equilibrium price of the stock, we rely on the financial market clearing

conditions which require St =
∑3

k=1Wkt. Combining this identity with (9), (14) and the

clearing of the consumption good market gives

St =
δ

ρ
− ψ(St − Ft) (21)

where

Ft = Et

[∫ ∞
t

ξt,uδudu

]
= δt(1− st)Et

[∫ ∞
t

e−ρ(u−t)
du

1− su

]
gives the fundamental value of the stock. Setting ν = ψ/(1 +ψ) and solving for the stock

price we finally arrive at

St = νFt + (1− ν)
δt
ρ
.

This expression shows that when arbitrageurs are absent from the economy (ν = 0)

the equilibrium stock price is given by Pt ≡ δt/ρ which is standard in economies with

logarithmic preferences. On the other hand, when arbitrageurs are present the equilibrium

price includes an additional component that is equal to −ψBt. This term is negative and

it is nonzero if and only if the stock price includes a bubble component in which case it

reflects the negative impact of arbitrage activity on the value of the collateral services

provided by the stock.

To complete the description of the equilibrium, it remains to determine whether the

stock price includes a bubble component or not. Using the definition of the bubble

together with the above expression, and the relation between the consumption share and

16



the weighting process in (15), we obtain

Bt = (1− ν) (Pt − Ft) = (1− ν)δtEt

[∫ ∞
t

e−ρ(u−t)
(

λt − λu
1 + γ + λt

)
du

]
(22)

and it follows that the stock price is bubble free if and only if the weighting process is a

martingale. Applying Itô’s lemma to the weighting process gives

dλt = (1 + γ)d

(
st

1− st

)
= −λt(1 + γ + λt)

εσδ
1 + γ

dZt,

so that the weighting process is a local martingale. However, the following proposition

shows that this local martingale fails to be a true martingale, and thereby proves that

any equilibrium has arbitrage activity.

Proposition 4. The weighting process is a strict local martingale. In particular, the

stock price includes a strictly positive bubble component in any equilibrium.

The following theorem relies on the properties of the weighting process to derive closed

form expressions for the stock price and the bubble on the stock, as well as parametric

conditions for existence and uniqueness of equilibrium.

Theorem 1. Let

g(s) ≡ β − P0(s− α (1− νsη)), (23)

with the constant

η ≡ 1

2
+

√
1

4
+

2ρ

(εσδ)2

and assume that the parameters of the model are such that

g(1) < 0 < g(0) = β + αP0 < P0 [1− ν(1− α)(β/((1− α)P0)
η] . (24)

The price of the stock and its bubble component are given by

St = (1− νsηt )Pt, (25)

Bt = (1− ν)sηtPt, (26)
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and the consumption share process st evolves according to (20) with initial condition

s0 = s∗ where s∗ ∈ (0, 1) is the unique solution to g(s∗) = 0.

As shown by (25) the equilibrium stock price is lower than the price Pt = δt/ρ that

would prevail in an economy with no bubbles, or in an economy where only agents 1 and 2

trade. We will be back to this issue in the analysis below, but notice for the moment that,

unless α = 0 in which case agent 1 holds the whole supply of the stock, the fundamental

value of the stock

Ft = St −Bt = (1− sηt )Pt

is not independent from the bubble since the path of the consumption share process

depends on the initial distribution of wealth in the economy which in turn depends on

the equilibrium stock price, and therefore on the size of the bubble.10

The next proposition shows that, in addition to a bubble in the price of the stock,

the equilibrium price system also includes a non trivial bubble in the price of the riskless

asset over any finite horizon.

Proposition 5. Assume that the conditions of Theorem 1 hold. Then the equilibrium

price of the riskless asset is

S0t = eqt
Pt
P0

(
st
s0

)1/ε

(27)

with the constant defined by

q = ρ− 1

2
(1− ε)σ2

δ .

Over a time interval of length τ > 0 the equilibrium prices of the stock and the riskless

asset include bubble components that are given by

Bt(t+ τ) = H (τ, st; 2η − 1)Bt, (28)

B0t(t+ τ) = H (τ, st; 2/ε− 1)S0t, (29)

10See Weil (1990) for another example of an economy in which the fundamental value of the asset
depends on the size of the bubble component and thereby generates an equilibrium price that is lower
than in the absence of the bubble.
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where

H(τ, s; a) ≡ N(d+(τ, s; a)) + s−aN(d−(τ, s; a)), (30)

d±(τ, s; a) ≡ 1

εσδ
√
τ

log(s)± a

2
εσδ
√
τ ,

and the function N(·) denotes the cumulative distribution function of a standard normal

random variable.

We stress the fact that the emergence of the bubble component in the price process

responds to a clear equilibrium mechanism: shifts in the interest rate and market price

of risk go on the right direction but are not sufficient to reach an equilibrium, so bubbles

arise to incite agents 1 and 3 to hold positions that are compatible with market clearing.

4 Analysis

In this section, we show that the mispriced assets are brought closer to their fundamental

values as the availability of credit grows, and that the arbitrageur’s trading activity

generates excess volatility and the leverage effect. We also explore welfare implications.

4.1 Portfolio strategies and bubble sizes

The following proposition provides an explicit representation of equilibrium portfolio

strategies.

Proposition 6. Portfolio positions (and their respective signs) are given by

(π1t
+
, φ1t
−

) =

(
1− (1− ε)st
(1 + γ)v(st)

,−1− (1− ε)st − (1− st)v(st)

(1 + γ)v(st)

)
Pt,

(π2t
+
, φ2t

+
) =

(
(1− ε)st
v(st)

,
v(st)st − (1− ε)st

v(st)

)
Pt,

(π3t
+/−

, φ3t
−

) =

(
h(st) + γ(1− st)v(st)

(1 + γ)v(st)
− νsηt ,−

h(st)

(1 + γ)v(st)

)
Pt,

where

v(s) = 1 +
νηεsη

1− νsη
,

h(s) = (1 + γs)(v(s)− 1) + εγs.
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Since the portfolio constraint binds at all times, agent 2 must hold a positive position

on the riskless asset that is offset by borrowing positions held by agents 1 and 3. It

is notable that agent 1 optimally chooses to hold a levered position on the stock even

though the stock also contains a bubble component. To understand this choice, notice

that he exploits the bubble on the riskless asset because it requires less collateral per unit

of initial profit.

Proposition 7. Let τ > t. Bubbles are such that

B0t(τ)

S0t

− Bt(τ)

St
≥ 0,

The following proposition confirms the above intuition, as it shows that the wealth of

unconstrained agent can be decomposed into a portfolio that uses the stock as collateral

and shorts the bubble on the riskless asset.

Proposition 8. The wealth of the unconstrained agent expressed as positions in the stock

and in the riskless asset’s bubble over horizon (t, τ ] is given by

W1t = φS1t(τ) + φB0
1t (τ), (31)

where

φS1t(τ)
+

=
(1− Σ0

t (τ)) (1− st) + εst
(1 + γ) (v(st)− Σ0

t (τ))
Pt, (32)

φB0
1t (τ)
−

= −1− (1− ε)st − (1− st)v(st)

(1 + γ) (v(st)− Σ0
t (τ))

Pt (33)

and the process

Σ0
t (τ) = −εst∂H(τ − t, st; 2/ε− 1)/∂s

H(τ − t, st; 2/ε− 1)
< 0,

corresponds to the diffusion coefficient of the process (1/σδ) logB0t(τ).

This strategy converges to the standard representation in (1) as τ →∞.11 Figure 1 shows

comparative statics for changes in the severity of the constraint (ε) and the size of the

credit facility (ψ).

11The fundamental value of the riskless asset converges to zero as τ → ∞, which implies that the
money market account in this economy is akin to fiat money, limτ↑∞B0t(τ) = S0t.

20



Insert Figure 1 here

The arbitrageur’s strategy, on the other hand, mimics agent 1’s strategy while financ-

ing it by shorting the bubble on the stock,

W3t = γW1t − ψBt.

Access to the credit facility allows the arbitrageur to be more aggressive than agent 1. In

particular, the arbitrageur may be even able to sustain short positions on both securities

as seen in Proposition 6. As a result, the arbitrageur holds a much larger short position

in the riskless asset bubble relative to his position in the stock, which when aggregated,

amount to a lower stock level required to clear the stock market. This mechanism is

behind the reduction in the value of the stock’s collateral services and consequently the

decrease in the relative size of the bubble, as illustrated in the left panel of Figure 2.

Insert Figure 2 here

One simple way to see the equilibrium effect described above is by noting that the stock

and arbitrage profits finance aggregate consumption, S0 +ψB0 = δ0/ρ. Since ∂
∂ψ
ψB0 > 0,

increasing ψ reduces necessarily the stock level since aggregate consumption is invariant

to the presence of the credit facility.

Level effects are not only restricted to the bubble on the stock. The bubble on the

riskless asset also decreases with a credit improvement, as seen in the right panel of Figure

2. Note however that the bubble on the riskless asset survives as ψ →∞.12

4.2 Volatility and the leverage effect

In a noteworthy departure from previous models with frictions and homogenous agents

with logarithmic utility,13 the price dividend ratio in (25) is decreasing in the consumption

share of the constrained agent as a result of the arbitrageur’s trading activity. Since the

consumption share of the constrained agent is negatively correlated with dividends, the

stock volatility is higher than the volatility of dividends in all states.

12The limiting result is in line with Loewenstein and Willard (2000) who show that bubbles can
generally exist on securities prices in zero net supply.

13See for example Detemple and Murthy (1997), Basak and Cuoco (1998) and Basak and Croitoru
(2000). In Xiong (2001), ‘convergence traders’ have logarithmic utility and reduce volatility on average,
but they can also increase volatility in some circumstances in the presence of noise traders.
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Corollary 1. The volatility of the stock is given by

σt = v(st)σδ = σδ +
σδνηεs

η

1− νsη
. (34)

The second term in (34) corresponds to what is commonly referred to as the excess

volatility component. This term is positive and increasing in the consumption share, an

observation which coupled with the fact that the price dividend ratio is decreasing in

the consumption share, implies that the model with arbitrage activity generates the so-

called leverage effect, i.e., the well-established stylized fact according to which volatility

increases when the stock price falls.14 Note also that volatility is increasing in the size of

the credit facility

∂σ0
∂ν

=
(1− ν)2s1+η0 σδεη

(1− νsη0)
2 (s0 + ναηsη0)

> 0. (35)

4.3 Welfare

The impact of an improvement on credit conditions on the agents’ welfare is summarized

in the following proposition.

Proposition 9. The arbitrageur benefits from an improvement of the credit conditions

(ψ ↑) at the expense of possibly both agents 1 and 2.

The expected utility of the arbitrageur

U3(ψ) ≡ E

[∫ ∞
0

e−ρt log(c3t)dt

]
= U0 + ρ−1 log

(
γ

1 + γ

)
+ E

[∫ ∞
0

e−ρt log(1− st)dt
]
, (36)

where U0 ≡ E
[∫∞

0
e−ρt log(δt)dt

]
, reveals that this result follows from the fact that

changes in ψ impact the consumption sharing rules (γ, s) through price shifts. In partic-

ular, the second term in (36) is increasing in ψ, since the relative weight of the arbitrageur,

γ = ψB0/w1, increases as the trading activity of the arbitrageur reduces the stock price.

The third term in (36) is also increasing in ψ because the starting point of the consump-

tion share is decreasing in the credit conditions and the path of s depends monotonically

on its starting point. The latter means that agent 2’s welfare is decreasing in ψ.

14See Schwert (1989) and Mele (2007) for evidence on the asymmetric nature of volatility and the
cyclical behavior of stock prices.
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A similar analysis shows that the welfare of agent 1, represented by

U1(ψ) ≡ E

[∫ ∞
0

e−ρt log(c1t)dt

]
= U0 − ρ−1 log(1 + γ) + E

[∫ ∞
0

e−ρt log(1− st)dt
]
, (37)

is negatively affected by an improvement of the credit conditions through two channels.

First, the second term is decreasing in ψ, since better credit conditions reduce his initial

wealth. Second, credit improvements also increase the stock’s volatility as shown in (35).

The latter effect is detrimental for agent 1 because the stock’s ‘collateral quality’ worsens

from the unconstrained agent’s standpoint. Indeed, the lower panel in Figure 1 shows that

the unconstrained agent drastically reduces his arbitrage position per unit of collateral

as ψ ↑.15

The negative impact caused by an improvement in credit conditions may be compen-

sated by a decrease in the share of consumption of the constrained agent, which increases

the third term in (37). Note however that if the initial endowment of agent 2 does not

depend on the stock (α = 0), credit conditions do not have welfare implications for the

constrained agent, as the process s is independent of ψ. In this case, an increase in the

availability of credit necessarily implies a welfare loss for agent 1, as it will impact the

stock price but not the interest rate.

5 Extensions

In this section, we show that similar asset pricing implications are obtained for an alter-

native credit facility. However, unlike the previous example, equilibrium may fail to exist

if the credit facility is too big. We also analyze the implications of a sudden reversal in

credit conditions for arbitrageurs.

5.1 Alternative credit facility

Assume that the arbitrageur faces a wealth constraint given by

W3t ≥ −`S0t (38)

15This effect could also be interpreted as if an increase in the mass of arbitrageurs effectively crowds
the unconstrained agent out of the arbitrage business.
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for some constant ` > 0. This bound depends on the evolution of the short rate only16

and requires that temporary losses be bounded by ` in discounted terms. Feasible plans

satisfy the static budget constraint

E

[∫ ∞
0

ξtc3tdt

]
≤ `,

where the term on the right hand side provides the present value of the profits that

arbitrageurs are able to reap from the market.

Proceeding as in the baseline example, the candidate stock price now depends linearly

on the price of the riskless asset,

St = Ft + δtEt

[∫ ∞
t

e−ρ(u−t)
λt − λu

1 + γ + λt
du

]
− `S0t

=

(
1− eqt `

P0

(
st
s0

)1/ε
)
Pt, (39)

where s evolves according to (20) with starting point given by

s0 = s∗ ≡ (α(P0 − `) + β)/P0.

The next proposition shows that is possible to construct a unique equilibrium by restrict-

ing not only the initial endowments as in (24), but also the size of arbitrage strategies

along the equilibrium path.

Proposition 10. The equilibrium exists if and only if

q = ρ− 1

2
(1− ε)σ2

δ ≤ 0, (40)

and

P0(`/P0)
ε < β + α(P0 − `) < P0 − `. (41)

(40) and (41) guarantee that s∗ ∈ (0, 1) while attributing strictly positive wealth to agent

1 and such that the stock price is nonnegative at all times.

Notably, the equilibrium fails to exist when the size of the credit facility is above a

threshold, ` ≥ P0. The intuition is that the size of the arbitrage positions might be too

big to be supported by a viable price system. In other words, (39) would be strictly

16See Loewenstein and Willard (2000) for a similar wealth constraint.
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negative with strictly positive probability.

On the other hand, the equilibrium implications in this economy match our previous

results in various dimensions. First, the bubble on the stock17

Bt = St − Ft =

(
sηt − eqt

`

P0

(
st
s0

)1/ε
)
Pt

is decreasing in the size of the credit facility. The bubble on the riskless asset over a time

interval of length τ is given by (29), and as in our baseline example, it decreases with

credit improvements, since s′0(`) = −α/P0 and the path of s depends monotonically on

its starting point.

Second, the arbitrage activity induced by the credit facility in (38) also generates the

leverage effect, since the stock volatility is given by

σt =

(
1 +

`S0t

St

)
σδ

and is increasing in the consumption share. Finally, volatility is increasing in the size of

the credit facility,

∂σ0
∂`

= P0/(P0 − `)2σδ > 0.

5.2 Liquidity shocks

We sketch the impact of an exogenous liquidity shock that gives rise to a sudden and

unanticipated change in the funding conditions ψ. In particular, we assume that ψ may

drop to zero in states in which the arbitrageur has negative net worth.18 Upon this

sudden change in credit conditions, the stock price adjusts to a new equilibrium with

ψ′ = 0, which, as seen in (25), implies S ′ ≥ S.

This liquidity shock may impact agent 2 negatively when the collateral position of the

arbitrageur, now valued at π3
S
S ′, does not cover for the arbitrageur’s short position |φ3|.

17The inequality in (40) ensures that Bt ≥ 0.
18In this brief exercise, we attempt to capture the fact that financial crises are often preceded by

periods of credit expansion during which agents become increasingly vulnerable to a reversal in eco-
nomic conditions. The crisis literature often uses exogenous liquidity shocks as a modeling device. See
Krishnamurthy (2010) for a recent example.
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This corresponds to states where the arbitrageur is rendered balance-sheet insolvent

π3
S
S ′ ≤ |φ3|,

with no possibility of repayment, since he cannot generate arbitrage profits due to the

tightened credit conditions. Interestingly, when π3 > 0, agent 2 will be indifferent between

forgoing a fraction

ϕ ≡ max
(

0; 1− (π3S
′/(|φ3|S))

+
)
∈ [0, 1]

of the arbitrageur’s debt position, or seizing the arbitrageur’s stock holdings, as seen in

Table 1.

Agent - State π3
S
S ′ ≤ 0 0 ≤ π3

S
S ′ ≤ |φ3|

2 W ′
2 = π2

S
S ′ + |φ1| W ′

2 = π2
S
S ′ + |φ1|+ (1− ϕ)|φ3|

3 W3 = π3
S
S ′ + φ3 < 0 W ′

3 = π3
S
S ′ + (1− ϕ)φ3 = 0

Table 1: Portfolio allocations after the liquidity shock ψ → 0

The key feature in states where 0 ≤ π3
S
S ′ ≤ |φ3| is that it may imply a redistribution

from constrained agents (lenders) to arbitrageurs. Unconstrained agents do not have an

incentive to intervene. To see this, note that the liquidity shock makes agent 1 better off,

since agent 1 now holds a higher valued position on the stock, π1
S
S ′ > π1

S
S, and his short

position on the money market account remains the same (due to its short term nature).

The analysis above may change significantly if the liquidity shock is coupled with

an unanticipated dividend shock such as a downward jump on dividends. In this case,

the arbitrageur is hit from two sources: the stock price decreases at the same time that

the credit conditions worsens. Notably, this type of liquidity shock may also impact

negatively the unconstrained agent.

6 Concluding remarks

This paper studies a pure exchange economy populated by three types of agents: con-

strained agents who are subject to portfolio constraints, unconstrained agents who are

only subject to a standard nonnegativity constraint on wealth, and arbitrageurs who,

in addition to being unconstrained, may incur transitory losses that are bounded by a

state-dependent credit limit.
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We show that this uncollateralized credit facility is valuable when there are asset

pricing bubbles and that the mispricing in securities decreases with improved credit con-

ditions, to the extent that the bubble on the stock vanishes in the limit of infinite credit.

The equilibrium with risky arbitrage activity is characterized by excess volatility and the

leverage effect, as well as a countercyclical market price of risk and low interest rates.

We find that constrained and unconstrained agents may be made worse off as the

arbitrageur’s trading activity impact prices in a way that may be unfavorable to them.

The model has some of the elements one would require to analyze the implications

of a sudden reversal in credit conditions and the possibility of bailouts: heterogeneous

access to credit and excess leverage. We sketch some of the implications of unanticipated

shocks in credit.
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A Proofs

Proof of Proposition 1. The static budget constraint in (5) for agent 1 is a well known

result (see e.g., Duffie (2001), Chapter 9.E.). For an arbitrary consumption and invest-

ment plan, the deflated wealth process of the arbitrageur is

ξtW3t +

∫ t

0

ξuc3udu =

∫ t

0

ξs (π3uσu −W3uθu) dZu.

The deflated stock and riskless asset price processes satisfy

ξtSt +

∫ t

0

ξuδudu = S0 +

∫ t

0

ξu (Suσu − Suθu) dZu,

ξtS0t = 1−
∫ t

0

ξuS0sθudZu.

Let Nt be defined by

Nt = ξtW3t + ψξtSt + `ξtS0t +

∫ t

0

ξu(c3u + ψδu)du

= ψS0 + `+

∫ t

0

ξu ((π3u + ψSu)σu − (ψSu +W3u + `S0u)θu) dZu (A.1)

with ψ ≥ 0 and ` ≥ 0. Nt is a nonnegative local martingale for positive consumption

plans, and hence a supermartingale, since the price system (S0t, St) is nonnegative. This

implies that

E

[∫ T

0

ξt(c3t + ψδt)dt+ `ξTS0T

]
≤ ψS0 + `.

The static budget constraint in (5) follows by setting ` = 0 and letting T →∞. �

Proof of Proposition 2. The optimal policies of the unconstrained agent in (9) and

(10) are a well known result (see e.g., Duffie (2001), Chapter 9.E and Karatzas and

Shreve (1998), p.32). The optimal policy of the constrained agent follows from Cvitanić

and Karatzas (1992). Agent 2 faces an implicit state price representation given by

ξ2t = e−
∫ t
0(ru+βu+ 1

2
θ22u)ds−

∫ t
0 θ2udZu ,

where θ2t = θt+σ
−1
t ωt. βt (ω) is the support function of the set−Ct. Optimality conditions
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imply that ω is defined by the relation

ωt = arg min
ω∈Bt

{
1

2

(
θt + σ−1t ω

)2
+ βt (ω)

}
.

where B is the set of points where the support function is finite. Using the definition

of the support function and Fenchel’s duality theorem (see Rockafellar (1996), Theorem

31.1), the problem above is transformed into a mean-variance program given by

sup
π̂∈C

{
π̂σtθt −

1

2
(σtπ̂)2

}
.

Since Ct is a closed convex subset of R, the problem admits a unique solution given by

σtπ̂t = κtθt, κt = min

(
1;

(1− ε)σδ
|θt|

)
.

where π̂ = π/W . The optimal policy of the arbitrageur is derived as follows. The

consumption process c3t = (eρty3ξt)
−1 is optimal if and only if there exists a constant

y3 > 0 that satisfies

E

[∫ ∞
0

ξt(e
ρty3ξt)

−1dt

]
= ψ (S0 − F0) .

The wealth process implied by (9) follows from the fact that Nt in (A.1) evaluated at the

optimal is a true martingale,

ξtW3t + ψξtSt +

∫ t

0

ξu(c3u + ψδu)du = Et

[∫ ∞
0

ξu(c3u + ψδu)du

]
,

so that

W3t =
c3t
ρ
− ψBt. (A.2)

Applying Itô’s lemma to (A.2) and matching terms with the process in (2) gives (12). �

Proof of Proposition 3. The marginal utility of the representative agent is identified

from the clearing condition

1

uc(δt, λt)
+

γ

uc(δt, λt)
+

λt
uc(δt, λt)

= δt,
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so that uc(δt, λt) = 1+γ+λt
δt

. The constants (y3, γ, λ0) are given by

y3 =
1

c30
=

1

ρψB0

, γ =
c30
c10

=
ψB0

w1

, λ0 =
c20
c10

=
w2

w1

.

The procedure to compute the interest rate and the market price of risk in (18) and (19)

is described in the main text. �

We make use of the following (adapted) results from Hugonnier (2012).

Lemma A.1. Let τ ≥ t, then

qt(τ) ≡ρstEt
[∫ τ

t

e−ρ(u−t)(1− λu/λt)du
]

=sηtH(τ − t, st; 2η − 1)− e−ρ(τ−t)stH(τ − t, st, 1). (A.3)

where the function H is defined in (30).

Proof. See Lemma A.3 in Hugonnier (2012). �

Lemma A.2. Take the process

Xt ≡
st

1− st
=

λt
1 + γ

(A.4)

whose dynamics follow

dXt = −Xt (1 +Xt) εσδdZt.

Let a ∈ R be an arbitrary constant. Then the expectation function of the nonnegative

local martingale

Yt(a) = 1−
∫ t

0

Yu(a)(a+Xu)εσδdZu (A.5)

is explicitly given by

Et [Yτ (a)] = Yt(a) (1−H(τ − t, st; 2a− 1)) (A.6)

where the function H is defined in (30). In particular, the unique solution to equation

(A.5) is a strictly positive local martingale but it is not a true martingale.
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Proof. See Lemma A.5 in Hugonnier (2012). �

Proof of Proposition 4. Applying Itô’s lemma to the weighting process λ gives

dλt
λt

= [βt (ν) + θ2t (θ2t − θt)] dt+ (θ2t − θt) dZt. (A.7)

From the proof of Proposition 2,

θ2t = κtθt, ωt = −(1− κt)σtθt.

Replacing these results in the drift of equation (A.7) gives

βt (ν) + θ2t (θ2t − θt) = κt(1− κt)(σ−1t θt)σtθt − κt(1− κt)θtθt = 0,

so that its dynamics evolve according to

dλt = −λt(1 + γ + λt)
εσδ

1 + γ
dZt

= −λt(1 +Xt)εσδdZt.

The result follows from Lemma A.2 by setting λt = Yt(1). �

Proof of Theorem 1. From (22), the bubble on the stock is given by

Bt =(1− ν)δtEt

[∫ ∞
t

e−ρ(u−t)
(

λt − λu
1 + γ + λt

)
du

]
=(1− ν)Pt

λt
1 + γ + λt

ρEt

[∫ ∞
t

e−ρ(u−t) (1− λu/λt) du
]

=(1− ν)Pt lim
τ→∞

qt(τ),

where qt(τ) is given in Lemma A.1. The result in (26) follows from taking the corre-

sponding limit in (A.3). The stock price in (25) follows from using the above result in

(21) and simplifying terms. Existence follows from ensuring that the constants (γ, λ0)

are strictly positive. This is equivalent to finding conditions such that s0 ∈ (0, 1) and

w1(s0) = (1− α)P0 (1− νsη0)− β = P0 (1− νsη0 − s0) > 0, (A.8)

since γ = ψB0

w1
and λ0 = w2

w1
. The function g(s) in (23) corresponds to the initial wealth of

agent 2 minus his wealth expressed using the consumption sharing rule. Note that g(s0)
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is continuous and decreasing,

g′(s) = −P0(αηνs
η−1 + 1) < 0. (A.9)

The following conditions ensure there is a root s∗ ∈ (0, 1),

g(0) = β + αP0 > 0, g(1) = β + P0 (α(1− ν)− 1) < 0. (A.10)

On the other hand, for w1(s
∗) > 0

1− ν(s∗)η > β/((1− α)P0), (A.11)

1− ν(s∗)η − s∗ > 0. (A.12)

Conditions in (24) follow from (A.10), (A.11) and (A.12). Uniqueness follows from (A.9).

�

Proof of Proposition 5. We use the equilibrium interest rate and the dynamics of the

consumption share of the constrained agent to compute the price of the riskless asset in

(27). From (7), the definition of Ft(τ) and the law of iterated expectations,

Bt(τ) =St − Et
[∫ τ

t

ξt,uδudu+ ξt,τSτ

]
=St − Et

[∫ ∞
t

ξt,uδudu−
∫ ∞
τ

ξt,uδudu+ ξt,τSτ

]
=Bt − Et

[
ξt,τ

(
Sτ − Eτ

∫ ∞
τ

ξτ,uδudu

)]
=Bt − Et [ξt,τBτ ] . (A.13)

In order to compute the second term in (A.13), we use the following results:

Et

[∫ ∞
t

e−ρuλudu

]
=
e−ρt

ρ
(λt − (1 + γ + λt)s

η
t ), (A.14)

Et

[∫ τ

t

e−ρuλudu

]
=
e−ρt

ρ
λt
(
1− e−ρ(τ−t)

)
− e−ρt

ρ
λt
qt(τ)

st
. (A.15)

(A.14) follows from the definition of qt(·) and the limit in (A.3). (A.15) follows from the

definition of qt(·). Using (14), (26), (A.14) (A.15) and the fact that from (A.6) we have
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Et[λτ ] in closed form by setting λt = Yt(1), gives

Et [ξτBτ ] =c10(1− ν)Et

[
e−ρτ

ρ
(1 + γ + λτ )s

η
τ

]
=c10(1− ν)Et

[
e−ρτ

ρ
λτ −

∫ ∞
τ

e−ρuλudu

]
=c10(1− ν)Et

[
e−ρτ

ρ
λτ −

∫ ∞
t

e−ρuλudu+

∫ τ

t

e−ρuλudu

]
=c10(1− ν)

e−ρt

ρ
(1 + γ + λt)s

η
t (1−H(τ − t, st; 2η − 1)) .

Combining the above result with (14) in (A.13) gives (28). The process Mt = S0tξt evolves

according to

dMt = −MtθtdZt = −Mt (1/ε+Xt) εσδdZt,

The bubble on the riskless asset in (29) is given by

B0t(τ) = S0t (1− Et [Mτ/Mt])

= S0tH(τ − t, st; 2/ε− 1) (A.16)

where (A.16) follows from an application of Lemma A.2 by setting Mt = Yt(1/ε). �

Proof of Proposition 6. The result follows from using equilibrium quantities from

Proposition 3 and Theorem 1 in Proposition 2. The sign of φ1 follows from noting

that

sign [φ1] = −sign [1− (1− ε)s− (1− s)v(s)]

= −sign
[
1− νsη−1((1− s)η + s)

]
The function s ∈ (0, 1)→ h(s) = 1− νsη−1((1− s)η+ s) is strictly decreasing with range

(1, 1− ν). �
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Proof of Proposition 7. Let G(τ, s; a) ≡ s
1+a
2 H(τ, s; a). From (28) and (29), we have

Bt(τ)/St =
G(τ − t, st; 2η − 1)

1 + ψ(1− sηt )

≤ G(τ − t, st; 2η − 1) (A.17)

≤ G(τ − t, st; 1) (A.18)

≤ s−1t G(τ − t, st; 1) (A.19)

≤ s
−1/ε
t G(τ − t, st; 2/ε− 1) (A.20)

= B0t(τ)/S0t.

(A.17) follows from η > 0 and s < 1. (A.18) follows from noting that G(τ, s; a) is

decreasing in a, when a > 0. To see this, note that for s ∈ (0, 1),

∂G(τ, s, a)

∂a
=

1

4
s1/2−a/2 log (s)G(s) ≤ 0

which follows from

G(s) = saErf

(
2 log (s) + a(εσδ)

2τ

2
√

2εσδ
√
τ

)
+ sa + Erf

(
−2 log (s) + a(εσδ)

2τ

2
√

2εσδ
√
τ

)
− 1

with

G(0) = 0,

G(1) = 2Erf

(
aεσδ
√
τ

2
√

2

)
≥ 0,

G ′(s) = asa−1
(

1 + Erf

(
2 log (s) + a(εσδ)

2τ

2
√

2εσδ
√
τ

))
≥ 0.

(A.19) is implied by the fact s ∈ (0, 1). (A.20) follows by direct differentiation. In

particular, note that s−at G(τ − t, st; 2a− 1) is increasing in a. �

Proof of Proposition 8. The portfolio decomposition follows from an application of

Itô’s lemma to the expression in (31) and matching diffusion terms. In particular, (32)

and (33) solve the system

φS1t(τ)v(st) + φB0
1t (τ)Σ0

t (τ) =
1− (1− ε)st

1 + γ
Pt, φS1t(τ) + φB0

1t (τ) =
1− st
1 + γ

Pt.

The sign of φS(τ) follows from the fact that Σ0
t (τ) < 0. The sign of φB0(τ) follows from
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sign
[
φB0
]

= sign [φ1]. �

Proof of Corollary 1. The volatility of the stock follows from an application of Itô’s

lemma to (25). �

Proof of Proposition 9. From (36), the expected utility of the arbitrageur is given by

U3(ψ) = U0 + ρ−1 log

(
γ

1 + γ

)
︸ ︷︷ ︸

(A)

+E

[∫ ∞
0

e−ρt log(1− st)dt
]

︸ ︷︷ ︸
(B)

.

We compute the derivative of (A,B) with respect to ψ. We first note that the starting

point of the consumption share process is decreasing in ψ,

∂s0
∂ψ

= − ∂g/∂ψ
∂g/∂s0

= − s1+η0 α

(1 + ψ) ((1 + ψ)s0 + αηψsη0)
< 0,

The term in (A) is increasing in ψ. To see this, first note that the relative weight of the

arbitrageur γ is increasing in ψ,

∂γ

∂ψ
=

P0(P0(1− α)− β)s1+η0

((P0(1− α)− β)(1 + ψ) + P0(1− α)ψsη0)
2 (s0 + αηνsη0)

> 0.

The numerator is positive since P0(1−α)−β > 0 is implied by (A.8). Finally, ∂
∂x

log
(

x
1+x

)
>

0 for x > 0.

The term in (B) is increasing in ψ. To see this, we use ∂s0
∂ψ

< 0 and the fact s is increasing

in its starting point, s0. To verify the latter, it suffices to check that the process Xt in

(A.4) is increasing in its starting point. From Protter (2004) (Th. V.39), ∂Xt/∂X0 = vt

is a strictly positive process which evolves according to dvt/vt = −(1 + 2Xt)εσδdZt. �

Proof of Proposition 10. Solving for the starting point of s0 given (39) yields

s0 = s∗ ≡ α(P0 − `) + β

P0

.
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We next ensure that the stock price in (39) is nonnegative,

St/Pt = 1− eqt `
P0

(
st
s0

)1/ε

≥ 1− `

P0

(
st
s0

)1/ε

(A.21)

≥ 1− `

P0

(
1

s0

)1/ε

≥ 0 (A.22)

In (A.21) use (40). (A.22) follows from s < 1. Initial consumption share s∗ ∈ (0, 1) and

w1(s
∗) > 0 are guaranteed by

−α(P0 − `) < β < (1− α)(P0 − `), ` < P0. (A.23)

The inequalities in (41) follow from (A.22) and (A.23). �
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Figure 1: The figure plots the arbitrage holdings of agent 1 relative to collateral.
Parameters are set to τ = 20, δ0 = 1, σδ = 0.2, ρ = 0.05, ψ = 0 (upper panel),
ε = 0.5 (lower panel). The upper panel shows that the unconstrained agent increases
his arbitrage position per unit of collateral as ε ↑ (the volatility of B0 goes down
with ε, the stock volatility is fixed at σt = σδ). The lower panel shows that the
unconstrained agent reduces his arbitrage position per unit of collateral as ψ ↑ (the
stock volatility goes up with ψ)

.
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Figure 2: The left (right) panel plots the relative size of the bubble on the stock
Bt(τ)/St (on the riskless asset B0t(τ)/S0t) for different levels of ψ. Parameters are
set to τ = 20, δ0 = 1, σδ = 0.2, ρ = 0.05, ε = 0.5.

40


	Introduction
	The model
	Information structure
	Securities markets
	Trading strategies
	Agents
	Definition of equilibrium
	Feasible sets and bubbles

	Equilibrium
	Individual optimality
	Equilibrium price system

	Analysis
	Portfolio strategies and bubble sizes
	Volatility and the leverage effect
	Welfare

	Extensions
	Alternative credit facility
	Liquidity shocks

	Concluding remarks
	Proofs

