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Abstract

We explore the role of technological innovation as a source of economic growth by constructing

direct measures of innovation at the firm level. We combine patent data for US firms from

1926 to 2010 with the stock market response to news about patents to assess the economic

importance of each innovation. Our innovation measure predicts productivity and output at the

firm, industry and aggregate level. Furthermore, capital and labor flow away from non-innovating

firms towards innovating firms within an industry. There exists a similar, though weaker, pattern

across industries. Cross-industry differences in technological innovation are strongly related to

subsequent differences in industry output growth.
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Introduction

Economists since Schumpeter have argued that technological innovation, combined with resource

reallocation, is the engine that sustains long-term economic growth. However, the impact of technical

change on economic growth and business cycle fluctuations remains difficult to quantify. Similarly,

while technology shocks play a central role in macroeconomic real business cycle models, there

is little consensus on whether these shocks represent actual technological improvements, or are

reduced-form representations of other economic forces.1 The primary reason for these ambiguities is

the difficulty in measuring technological innovation in the data. This paper aims to fill this gap.

We construct a novel economic measure of innovation that combines information from a patent

dataset with stock market data over the period 1926 to 2010.2 Measuring technological innovation

through patents offers important advantages. Patents are a direct measure of innovation that

are available as far back as the eighteenth century. However, the use of patents as a measure of

innovation has a significant shortcoming: not all patents are of equal economic value. Thus, an

increase in the number of patents granted need not coincide with greater technological innovation.

Our central idea is to use the stock market reaction around the day the patent is granted to

appropriately weigh each patent. On the day that the patent is granted, market participants learn

the full details of the patent. We use this stock market reaction as a measure of patent quality to

construct measures of innovation at the firm, industry and economy level which allows us to evaluate

the reallocation and growth dynamics within and across industries after bursts of innovative activity.

Our approach to measuring the quality of patents offers distinct advantages over the existing

measures of patent quality. Patent citations contain valuable information that can be used to assess

the quality of patents.3 However, patent citations suffer from two major drawbacks. First, measuring

the number of future citations each patent generates requires information over the entire sample.

In many economic applications – such as when exploring the short- and medium-run response of

investment or hiring decisions to innovation – it may be more desirable to use a measure that

depends on the contemporary assessment of the value of a patent, as is the case with our measure.

Second, the patent citation data is reliably available only in the later part of our sample.4 This

lack of information creates problems in assessing the quality of earlier patents, since patents often

tend to cite only the most recent ones (Caballero and Jaffe, 1993).5 In contrast, our measure is

reliably available over a long time period allowing us to make meaningful comparisons. Despite

these two drawbacks, patent citations provide a valuable independent measure of the realized value

of a patent. Hence, we use patent citations as a validation of our procedure. We find that the firm’s

stock market reaction when the patent is granted is a strong predictor of the number of citations

the patent receives in the future.

1See, for instance, Cochrane (1994).
2Several new studies exploit the same source of patent data (Google Patents) as we do in our paper. For instance,

see Moser and Voena (2011), Moser, Voena, and Waldinger (2012) and Lampe and Moser (2011).
3See, for example, Harhoff, Narin, Scherer, and Vopel (1999), Hall, Jaffe, and Trajtenberg (2005) and Moser,

Ohmstedt, and Rhode (2011).
4Moser and Nicholas (2004) and Nicholas (2008) discuss issues in extracting citations data from patent documents

before 1975. In addition, even in the post-1975 period citation outcomes are affected by the identity of the patent
examiner (Cockburn, Kortum, and Stern, 2002).

5For instance, the telephone patent by Alexander Graham Bell (patent number 174,465) has only one citation in
the Google Patent database. The first year that patent citations are officially included on patent documents is 1947.
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Our measure of technological innovation captures known periods of high technological progress as

well as firms driving these waves (e.g., technologically progressive 1960s and early 1970s, see Laitner

and Stolyarov (2003)). In addition, the empirical distribution of firm-level innovation measure is

extremely fat-tailed, since a few large firms contribute disproportionately to the aggregate rate of

innovation in the economy. The identity of these firms varies by decade. This finding is consistent

with past research which describes the nature of radical innovations (Harhoff, Scherer, and Vopel

(1997)). Furthermore, we find that characteristics of innovating firms using our measure match

those of innovators as described by Baumol (2002), Griliches (1990) and Scherer (1983).

Armed with our measure, we examine the relation between innovation and economic growth.

First, we explore the link between firm productivity and innovation. Our innovation measure is

strongly linked to productivity of capital and labor, both at the firm and at the industry level. Firms

and industries that innovate experience a surge in productivity and output. In addition, we find

several patterns in the data that are consistent with Schumpeter’s notion of “creative destruction”.

The innovation activity of competing firms has a negative effect on firm productivity in the short

run. In addition, capital and labor are reallocated towards firms that innovate, away from firms that

do not. We find similar patterns across industries. Furthermore, an increase in industry innovation

is associated with an increase in the rate of firm exit, consistent with the view that innovation leads

to industry shakeouts.

Next, we relate aggregate growth to innovation by estimating the impulse response of aggregate

total factor productivity (TFP) and output to our aggregate innovation measures. Our innovation

measure accounts for a substantial fraction of movements in aggregate TFP. An increase in innovation

is associated with an increase in aggregate output, although with a lag of three to four years. We

find similar patterns in the cross-section. Differences in innovation are strongly related to differences

in subsequent growth both at the industry and firm level. These findings make a strong case for

innovation as a source of long-run firm growth, consistent with the equilibrium model of Klette and

Kortum (2004).

Our paper is connected to several strands of the literature. Our work is closely related to the

literature in macroeconomics that aims to measure technological innovation. Broadly, there are

three main approaches to identify technology shocks. First, researchers have measured technological

change through Solow residuals, after accounting for non-technological effects such as imperfect

competition and varying utilization (e.g., Basu, Fernald, and Kimball (2006)). Second, researchers

have imposed long-run restrictions on vector auto-regressions (VARs) to identify technology shocks.

Both of these approaches measure technology indirectly. The resulting technology series are highly

model-dependent, as they depend on the identification assumptions.

Our approach falls into the third category, which constructs direct measures of technological

innovation using micro data. Shea (1999) constructs direct measures of technology innovation using

patents and R&D spending and finds a weak relationship between TFP and technology shocks.

Our contrasting results suggest that this weak link is likely the result of assuming that all patents

are of equal value. Indeed, Kortum and Lerner (1998) show that there is wide heterogeneity in

the economic value of patents. Furthermore, fluctuations in the number of patents granted are

often the result of changes in patent regulation, or the quantity of resources available to the US

patent office (see e.g. Griliches (1990) and Hall and Ziedonis (2001)). As a result, a larger number
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of patents does not necessarily imply greater technological innovation. Using R&D spending to

measure innovation overcomes some of these issues, but doing so measures innovation indirectly.

The link between inputs and output may vary as the efficiency of the research sector varies over

time or due to other economic forces.6 The measure proposed by Alexopoulos (2011) based on

books published in the field of technology overcomes many of these shortcomings. However, this

measure is only available at the aggregate level, and does not directly capture the economic value

of innovation. In contrast, our measure is available at the firm level, which allows us to evaluate

reallocation and growth dynamics across firms and sectors.

Our paper is not the first to link firm patenting activity and stock market value (Pakes, 1985;

Austin, 1993; Hall et al., 2005; Nicholas, 2008). In particular, Pakes (1985) examines the relation

between patents and the stock market rate of return in a sample of 120 firms during 1968–1975. His

estimates imply that, on average, an unexpected arrival of one patent is associated with an increase

in the firm’s market value of $810,000. The ultimate objective of these papers is to measure the

economic value of patents; in contrast, we use the stock market reaction as a means to an end—to

construct appropriate weights for an innovation measure which we employ to study reallocation

and growth dynamics. Our paper is also related to work that examines whether technological

innovation leads to positive knowledge spillovers or business stealing. Closest to our paper is the

work of Bloom, Schankerman, and Reenen (2010), who disentangle the externalities generated by

R&D expenditures on firms competing in the product and technology space. We contribute to this

literature by proposing a measure of patent quality based on stock market reaction and assessing

within- as well as between-industry reallocation and growth dynamics after bursts of innovative

activity.

Our work is also related to literature on endogenous growth and creative destruction (see

Acemoglu (2009) for a textbook treatment). Closest to our work are the papers that explore the

impact of innovation on firm productivity and growth (Caballero and Jaffe, 1993; Akcigit and Kerr,

2010; Acemoglu, Akcigit, Bloom, and William, 2011). Finally, our paper is related to work that

explores the micro-foundations of aggregate economic shocks. In particular, Gabaix (2011) proposes

that if the distribution of firm size is sufficiently fat-tailed, as is the case in the US and in most

of the world, firm-specific shocks can have substantial effects on aggregate quantities due to the

failure of the law of large numbers. Consistent with this view, the empirical distribution of firm-level

innovation measure is fat-tailed, suggesting that the innovative activity of a few large firms can have

a large aggregate impact. However, we find evidence of comovement of our innovation measures

across firms, suggesting that common shocks play an important role as well.

The remainder of the paper is organized as follows. In Section 2 we describe the constriction

of our innovation measure. Section 3 studies the response of individual firms and industries on

our innovation measure and documents patterns of reallocation. Section 4 explores the response of

aggregate variables on our innovation measure. Section 5 discusses the connection of our findings

with existing models and concludes.

6Kortum (1993) documents that the patent-to-R&D ratio has shown a secular decline in the US.
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2 Measuring innovation

In this section we explain how we construct our firm, industry and aggregate level measures of

innovation. In our analysis, we use patent data from Google Patents and CRSP. See the Online

Appendix (Sections A-C) for details.

Our innovation in this paper is to identify the value of a patent from the stock price reaction

around the days that the market learns that a firm has applied for a specific patent, or that a

patent has been granted to the firm. In order to examine stock market reactions, we need to define

what constitutes an information event. Prior to 2000, patent application filings were not publicized

(see e.g. Austin (1993)). In contrast, information does become widely available when patents are

granted. The USPTO’s publication, Official Gazette, which is published every Tuesday, lists patents

that are granted that day and reports details of the patent. Subsequent to the American Inventors

Protection Act of 1999, the USPTO also began publishing applications 18 months after filing even

if the patents had not yet been granted. Publication of these applications occurs on Thursday of

each week. When application publication dates are available, we combine the stock market reaction

around both information events to construct our innovation measure.

When constructing our innovation measure, we only use information on patents by publicly-

traded firms. Hence, one worry is that we do not include private companies, several of which might

be responsible for large and more important technology shocks.7 This omission is likely to bias

our findings toward zero. The magnitude of any bias, however, is likely to be small. First, Bloom

et al. (2010) show that public firms in Compustat account for most of the R&D expenditures in the

United States. Second, Baumol (2002) notes that while several independent and private firms might

provide initial innovation, large publicly traded firms conduct most of the refinements that lead to

large improvements in welfare.

We should stress that while our method identifies the value of a patent, relying on stock market

reaction suffers from two limitations. First, market participants may have advance knowledge of

the patent, either through information leakages, or because the firm has chosen to make its patent

application public. If so, the stock market reaction on the patent grant day or publication date

would underestimate the economic value of the patent. Second, our method only allows us to

measure the private value of the patent. In contrast, the social value of a patent can be higher, or

lower, depending on whether the patent generates research spillovers or steals business from existing

firms. Notably, the challenge of accurately measuring the private and social value of an innovation

is not unique to our paper, but confronts other measures, such as R&D or patent citation counts, as

well.

2.1 Extracting patent value from stock price reaction

We extract information about the value of each patent from stock price reactions using two methods:

a simple measure that ignores measurement error, and a more sophisticated measure that incorporates

the error into the estimation procedure.

7Kortum and Lerner (2000) find that venture capital, which accounts for 3% of total R%D expenditures, is
responsible of 15% of industrial innovations.
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A simple measure

To isolate market movements we focus on the firm’s idiosyncratic return, rft, defined as the firm’s

return minus the return on the market portfolio. By using this ‘market-adjusted-return model’

(Campbell, Lo, and MacKinlay, 1997), we avoid the need to estimate the firm’s stock market beta,

therefore removing one source of measurement error. As a robustness check, we construct the

idiosyncratic return as the firm’s stock return minus the return on the beta-matched portfolio

(CRSP: bxret). This has the advantage that it relaxes the assumption that all firms have the same

amount of systematic risk, but is only available for a smaller sample of firms. Unless noted otherwise,

our results are quantitatively similar when using this alternative definition.

Given our measure of idiosyncratic firm return, we construct the idiosyncratic stock price

reaction as the firm’s idiosyncratic return during the announcement window, rljd, times the market

capitalization of the firm, Sjd−1, on the previous day:

Aj = rljd Sjd−1, rlfd ≡
l∑

t=0

rjd,d+t. (1)

The next step is to choose the length of the announcement window, l. As we show below, trading

volume is higher on the two days following a patent being granted, suggesting that the stock price

movements in days after the announcement are also informative. The downside is that increasing

the announcement window can potentially add noise to our estimates. In the baseline case, we

choose a three-day window (l = 2). As a robustness test, we extend the window to five days (l = 4).

The private value of a patent is generally nonnegative because a firm can always choose not to

implement it. Therefore, when we construct our innovation measure, we restrict attention only to

positive stock price responses:

A+
j = max[Aj , 0]. (2)

Our first measure of innovation A+
j is easy to construct, since it involves no estimation of

parameters. The downside, however, is that it ignores the possibility of measurement errors. In

particular, by truncating returns at zero we are introducing an upward bias in our estimate of the

dollar value of innovation. The magnitude of this bias is increasing in the volatility of the firm’s

idiosyncratic return. To ensure that the variation in our measure A+
j does not result from variation

in the firm volatility, we control for idiosyncratic volatility σft throughout.

Adjusting for measurement error

We construct an alternative measure of innovation to explicitly account for measurement error

introduced while constructing the simple measure.8 In other words, we account for that fact that

the stock price of innovating firms may fluctuate for reasons unrelated to innovation during the

announcement window. The idiosyncratic stock return during the announcement day window can

be decomposed as:

rljd = xj + ejdl, (3)

8We are grateful to John Cochrane for this suggestion.

5



where x denotes the value of the patent (as percentage of market value) and edl the component of

firm stock return that is unrelated to the patent. Under the assumption that ejdl ∼ N (0, ξj) and x

is distributed according to a Gaussian N (0, vj) truncated at zero, we can construct the conditional

expectation of the value of the patent as a function of the firm’s stock return:

E[xj |rljd] = δj r
l
jd +

√
δj ξj

φ(Rj)

1− Φ(Rj)
, (4)

where φ and Φ are the standard normal pdf and cdf, respectively, and

Rj = −
√
δj

rljd√
ξj
, δj =

vj
vj + ξj

. (5)

To implement our procedure, we need estimates of vj and ξj , preferably at the firm level. To

reduce the number of parameters, we assume that δj = δ, that is, the signal-to-noise ratio is constant

across firms and time. To estimate δ, we regress log squared returns on a patent announcement-day

dummy variable, Ifd,

ln
(
rlfd

)2
= a0 + aft + bd + γIfd + ufd, (6)

controlling for firm-year (aft) and day-of-week (bd) fixed effects. The signal-to-noise estimate is

then:

δ̂ = 1−
var(rlfd|Ifd = 0)

var(rlfd|Ifd = 1)
= 1− e−γ̂ . (7)

We estimate (6) using a three-day (l = 2) and a five-day (l = 4) return announcement window. We

obtain estimates δ̂ ≈ 0.031 in both cases, so we use this as our benchmark value.

Next, we estimate the measurement error ξj . There is strong evidence that firm-volatility varies

both in the time-series and the cross-section, hence it is important to allow ξj to vary both across

firms and time. For every firm f and year t we estimate its idiosyncratic variance, σ2
ft, from daily

returns. This variance is estimated over both announcement and non-announcement days, so it is a

mongrel of both v and ξ. Given the estimate of the daily variance σ2, the fraction of trading days

that are announcement days, µ, and our estimate for the signal-to-noise ratio, δ̂, we recover the

measurement error by ξft = σ2
ft (1 + l)

(
1 + µft(1 + l) δ̂

1−δ̂

)−1
.

We then construct our second innovation measure as:

Âj = E[xj |rljd] × Sjd−1. (8)

Our second innovation measure (8) explicitly accounts for the fact that a firm’s idiosyncratic return

may contain information unrelated to the value of a patent. The conditional value of a patent in

equation (4) is an increasing and convex function of the daily firm return, and thus has a similar

shape as our simple innovation measure (2), up to a scale parameter that depends on the signal to

noise ratio.
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2.2 Information in stock-price responses

We now provide evidence that the stock market reaction contains valuable information about the

value of a patent. First, we document that trading volume increases around the days that patents

are granted (or their applications are published).9 Second, we document that the stock market

reaction of a patent is correlated with an independent measure of its realized value–the number of

future citations the patent receives.

Trading volume

We regress a firm’s share turnover x (trading volume divided by shares outstanding) on an an-

nouncement day dummy variable Ifd,

xfd+k = a0 + aft + bd + b(k) Ifd + ufd, (9)

controlling for firm-year ζft and day-of-week bd fixed effects. We vary k from −1 to 5. We find that

there is a statistically significant increase in share turnover around the day that the firm is granted

a patent or its application is publicized. Volume increases on the day of the announcement, and

remains temporarily higher for the next two days. We find that the total turnover in the first three

days after the announcement increases by 0.21-0.40%. Given that the daily median turnover rate is

1.29%, this is an economically significant increase in trading volume, consistent with the view that

patent issuance conveys important information to the market. See the Online Appendix (Table 3)

for the full set of results.

Patent citations

The next step is to explore whether the stock price reaction around the day of the announcement

carries information about the likelihood of the patent receiving citations in the future. We look at

patent citations because they represent an independent measure of the realized value of a patent.

We examine whether the firm’s stock price reaction when granted patent j is correlated with

the number of future citations, Cj , the patent subsequently receives:

Cj = a+ bAj + yj + γ log σj + ej . (10)

We include grant-year (or publication-year) fixed effects (yj) in the regression because older patents

have had more time to accumulate citations. We include the firm’s idiosyncratic volatility σ to

control for the truncation-induced bias in our simple measure A+. We consider both three-day

(l = 2) and five-day (l = 4) announcement day windows. We cluster the standard errors by year.

We show the estimation results in Table 1. Our truncated measure A+ is informative about the

number of future citations. As we see in Panel A, the coefficient of patent citations on our innovation

measure is statistically significant across patent length windows. The economic magnitudes are

moderately significant. The median number of citations a patent receives is 5. An increase from

9Though prices can adjust to new information absent any trading, the fact that stock turnover increases following
a patent grant or publication is consistent with the view that some information is released to the market, and not all
agents share the same beliefs.
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the median to the 90th percentile in terms of stock price reaction around the day the patent is

granted (approximately 24 million 1982 US dollars) is associated with 0.27 more citations. The

corresponding numbers for the patent publication date is 31 million US dollars and 0.1 citations

respectively. The previous numbers correspond to the three-day (l=2) window, but the results using

the five-day (l=4) window are quantitatively similar. The magnitudes are substantially larger when

we use our measure adjusted for measurement error, as we see in Panel B. An increase from the

median to the 90th percentile in terms of our innovation measure Â, corresponding to approximately

13 to 27 million 1982 US dollars depending on the window, is associated with 1.7 to 1.8 (or 0.4 to

0.5) more citations, measured around the patent grant (or publication) day.10

Next, we repeat the exercise, replacing Aj with its logarithm, lnAj . This serves two purposes.

First, it ameliorates the effects of outliers. Second, for our truncated measure A+, it explores whether

the positive effect on citations comes from the transition from zero to positive, or it also exist if we

focus on the positive responses alone. As we see in Panels C and D, the semilog specification yields

estimates that are economically more significant. An increase in A+ and Â from the median to the

90th percentile is associated with 1.8-2.1 (0.7) more patent citations, using data on patent grant

(publication) day.

In addition, we perform a number of robustness tests. First, our findings are quantitatively

similar if we estimate equation (10) with a Poisson or negative binomial regression. Second, the

results using our second idiosyncratic return measure (the firm’s return minus the beta-matched

portfolio) are similar, though one-third smaller in magnitude. Third, we explore what happens if we

do not truncate the idiosyncratic dollar return Aj . We find that the simple non-truncated dollar

return Aj is essentially uncorrelated with future citations.

The results of this section suggest that the stock price reaction within a few days after the patent

is granted contains important information about the value of the patent. We use this information

to weigh the number of patents when we construct measures of innovation at the firm, industry

or aggregate level. Since the point estimates are a bit higher when we use a three-day versus a

five-day window, we focus on the former throughout the paper. Finally, the stock price reaction

around both the grant as well as the publication date appear to be informative. Thus, in what

follows, we measure the value of each patent as the sum of the values obtained using the grant-day

and publication-day windows.

2.3 Some illustrative case-studies

Before turning to our main results, we provide some illustrative case studies to highlight the success

of our method in identifying valuable patents. For these examples we performed an extensive search

of online and print news sources to confirm that no other news events could account for the return

around the patent dates.

The first example is patent 4,946,778, titled “Single Polypeptide Chain Binding Molecules”,

which was granted to Genex Corporation on August 7, 1990. As shown in Panel A of Figure 1,

the stock price increased 67% (in excess of market returns) in the three days following the patent

10Note that small changes in citations generated by a patent (around the median number) can be associated with
large value implications for the firm producing the patent (Hall et al. (2005)).
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announcement. Investors clearly believed the patent was valuable, and news of the patent was

reported in the media. For example, on August 8 Business Wire quoted the biotechnology head of

a Washington-based patent law firm as saying “The claims issued to Genex will dominate the whole

industry. Companies wishing to make, use or sell genetically engineered SCA proteins will have to

negotiate with Genex for the rights to do so.”

The patent has subsequently proved to be important on other dimensions as well. The research

that developed the patent, Bird, Hardman, Jacobson, Johnson, Kaufman, Lee, Lee, Pope, Riordan,

and Whitlow (1988), was published in Science and has since been cited over 1300 times,11 while the

patent itself has been subsequently cited by 775 patents. Genex was acquired in 1991 by another

biotechnology firm, Enzon. News reports at the time indicate that the acquisition was made in

particular to give Enzon access to Genex’s protein technology.

Another example from the biotechnology industry is patent 5,585,089, granted to Protein Design

Labs on December 17, 1996. The stock rose 22% in the next two days on especially high trading

volume (Panel B of Figure 1). On December 20, the New York Times reported that the patent

“could affect as much as a fourth of all biotechnology drugs currently in clinical trials.”

Finally, consider the case of patent 6,317,722 granted to Amazon.com on November 13, 2001

for the “use of electronic shopping carts to generate personal recommendations”. When Amazon

filed this patent in September 1998, online commerce was in its infancy. Amazon alone has grown

from a market capitalization of approximately $6 billion to over $100 billion today. The importance

of a patent that staked out a claim on a key part of encouraging consumers to buy more – the

now-pervasive “customers also bought suggestions” – was not missed by investors: The stock rose

34% in the two days after the announcement, adding $900 million in market capitalization (see

Panel C of Figure 1).

Other patents associated with large returns include an ink jet technology granted to Canon in

1982 (Panel D of Figure 1), and a digital storage device granted to Sperry Rand in 1959. These

examples, and a number of others we carefully investigated indicate that our method of identifying

important patents by looking at stock returns appears to work well.

2.4 Construction of innovation measures

We now explain how we use the stock price reaction of innovating firms to construct measures of

innovation at the firm, industry and aggregate level. In addition, we discuss various properties of

our measures, which together strongly reaffirm that these measures are reasonable indicators of

innovative activity.

Firm-level measures of innovation

In most of our analysis, the unit of observation is a year because of the availability of macroeconomic

data. Hence, we need to construct measures of innovation at annual frequencies. We do so by

summing over the stock price reaction across all patents granted, or its application published, to

11Google Scholar citation count.
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firm f in year t,

Avft =
∑
j∈Jg

ft

Aj +
∑
j∈Jp

ft

Aj , Aj ∈ [A+
j , Âj ], (11)

where Jgft and Jpft denote the sets of patents granted and published applications, respectively, to

firm f in year t.

In our firm-level analysis, we scale the dollar value of innovation by the end-of-year firm market

capitalization, S, in year t:

Aft =
Avft
Sft

. (12)

Hence, our firm-level innovation measures can be interpreted as the fraction of firm f ’s value that

can be attributed to innovation in year t.

As we see in Table 2, the distribution of our firm-level measure is skewed to the right. In

addition, as we show in the Online Appendix (Figure 2) the distribution of our firm-level measures

of innovation A+
f and Âf has fat tails. Restricting attention to the top 10 percent of the distribution,

the relation between the log complementary empirical cdf, log(1− F (A)), and the log innovation

measure, logA is close to linear, with a slope coefficient of approximately −1.9. Hence, the tail

behavior of A can be well approximated by a power law. A simple estimator of a power law

exponent (Newman, 2005) yields a point estimate of −2.75.12 Our findings that the distribution of

patent quality is fat-tailed is consistent with Harhoff et al. (1997), who show similar results for the

distribution of patent citations.

In addition to some patents being very valuable, our results indicate that a few large firms are

very important for the aggregate rate of innovation in the economy. The identity of these firms

varies by decade. In the 1930s and 1940s, AT&T and GM are responsible for a large share of

innovative activity. In the 1950s and 1960s, du Pont and Kodak take a leading role. In 1970s and

1980s, a large share of innovation takes place in Exxon, GE, 3M and IBM. Finally, in the 1990s and

2000s, “new economy” firms are responsible for a large share of innovation, namely Sun, Oracle,

Microsoft, Intel, Cisco, Dell, and Apple.

Next, we explore how our firm-level measures of innovation are related to firm characteristics, in

particular Tobin’s Q, firm size, K, and R&D spending (normalized by assets):

Aft = a0 + a1 logQt−1 + a2 logKt−1 + a3 logRDt−1 + ρAft−1 + uit. (13)

We estimate equation (13) using the entire sample of Compustat firms from 1950 to 2010 using a Tobit

model.13 We include industry dummies to account for industry-level time invariant characteristics;

and time dummies to account for changing state of the business cycle as well as changes in patent

law or changes in the efficiency and resources of the USPTO (see e.g. Griliches (1989)) during our

sample period. We cluster the errors by firm.

We find that firms that are large, have higher Tobin’s Q, and have higher R&D expenditures are

more likely to innovate. These findings are similar to those discussed in Baumol (2002), Griliches

12This estimator assumes that A is i.i.d. across firms and across time. After removing firm and time fixed effects,
the point estimate of the power law exponent is equal to −3.70 and −3.55 for A+ and Â respectively.

13Note that information on R&D expenditure is reliably reported in Compustat only from 1975 onwards. As a
result our sample period for regressions that use R&D stock is restricted to 1975–2010.
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(1990), Scherer (1965) and Scherer (1983) on the characteristics of firms that have conducted radical

innovation and have been responsible for technical change in the U.S. See the Online Appendix

(Table 4) for the full set of results.

Aggregate measures of innovation

We construct industry-level and economy-wide measures of innovation by aggregating our firm-level

measures across firms. In particular, we construct dollar measures of innovation, by aggregating our

firm-level measures across the set Nt of firms across the entire economy or at the industry level:

Avt =
∑
f∈Nt

Avft, Avft ∈ [A+v
ft , Â

v
ft]. (14)

Our dollar measure Av will be mechanically affected by economic forces that affect the level of stock

prices but are likely to be unrelated to innovation, such as changes in discount rates. Hence, as

before, we scale our dollar measure Av by the total market capitalization

At =
Avt
St
, (15)

where St =
∑

f∈Nt
Sft. Thus, our aggregate measure, At, is a value-weighted average of our firm-level

innovation measure, Aft.

We compare our two measures of aggregate innovation with three aggregate measures proposed

in the literature: the log number of total patents granted; the log stock of R&D capital from the

BEA; and the log number of technology books published from Alexopoulos (2011). Some of these

measures show a secular time trend, so we remove a deterministic time-trend from all measures.

We plot these series in Figure 2. Our measures of innovative activity line up well with the

three major waves of technological innovation in the U.S. First, our measures suggest high values of

technological innovation in the 1930s, consistent with the views expressed in Field (2003). When we

dissect our measures we find that firms that primarily contribute to technological developments

during the thirties are in the automobiles (such as General Motors) and telecommunication (such as

AT&T) sectors. This description fits well with studies that have examined what sectors and firms

led to technological developments and progress in the 1930s (Smiley, 1994).

Second, our measures suggest higher innovative activity during 1960s and early 1970s – a period

commonly recognized as a period of high innovation in the U.S (see Laitner and Stolyarov (2003)). As

has been noted, this was a period that saw development in chemicals, oil and computing/electronics

– the same sectors we find to be contributing the most to our measure with major innovators being

firms such as IBM, GE, 3M, Exxon, Eastman Kodak, du Pont and Xerox.

Third, developments in computing and telecommunication have brought about the latest wave of

technological progress in the 1990s and 2000s, which coincides with the high values of our measure.

In particular, it is argued that this is a period when innovations in telecommunications and computer

networking spawned a vast computer hardware and software industry and revolutionized the way

many industries operate. We find that firms that are main contributors to our measure belong to

these sectors with firms such as Sun Microsystems, Oracle, EMC, Dell, Intel, IBM, AT&T, Cisco,
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Microsoft and Apple being the leaders of the pack. We next turn to providing firm level evidence

that lends additional support to validity of our measures.

Comparing our aggregate innovation series, we also note four important points. First, our two

aggregate innovation series are very similar to each other, suggesting that the truncation bias in A+

is diversified across firms. Second, our measure displays different behavior than the total number of

patents, especially in the beginning and towards the end of the sample. The correlation between

log A+ (Â) and the log number of patents is equal to 0.36 (0.42) in levels and 0.16 (0.11) in first

differences. Third, our two innovation measures capture similar low-frequency movements to R&D

spending and the number of technology books published in the Library of Congress, in particular

the rise in innovative activity during the 1960s and early 1970s. Finally, our innovation measures

displays substantial high-frequency variability relative to either the stock of R&D or the number of

technology books. Some of this variability comes from variation in the number of patents granted,

but a significant part comes from changes in the average response of the stock market on these

patent grant dates. In contrast, the stock of R&D capital and the number of technology books

display mostly low-frequency variation.

We end this section by discussing the economic source of time-series variation in our aggregate

innovation measure. One possibility, in the spirit of the ‘granularity’ hypothesis of Gabaix (2011), is

that the observed time-series variation in aggregate innovation is the result of disproportionately

large idiosyncratic shocks that fail to be diversified away. This view is consistent with our findings

above that the right tail of our firm-level innovation measure follows a power law. The alternative

hypothesis is that there is an underlying macroeconomic shock that affects the firm-level propensity

to innovate and the distribution of patent outcomes.

To shed some light on this, we decompose the aggregate measure of innovation Avt into Av1
t , the

dollar value of innovation that is contributed by the top 1% of firms; and Av99
t , the value that is

contributed by the remaining firms. Indeed, our aggregate innovation measure is dominated by a

few large firms. Focusing on the sample of firms with positive innovation Avft, the top 1% of firms

in terms of innovation account for an average of 32% of the total dollar value of innovation Avt . If

aggregate innovation is determined by large idiosyncratic shocks, we would expect innovations in

Av1
t to be uncorrelated with A99

t . Instead, we find that the sample correlation between ∆ lnAv1
t

and ∆ lnAv99
t ranges from 75% to 78%, depending on our measure. Thus, the data suggests that a

systematic shock affecting all firms is responsible for a large portion of the time-series variation in

Av.

3 Innovation, productivity and reallocation

To maximize the economy’s overall level of production, its resources need to be allocated to the

most productive firms and industries.14 Here, we explore this mechanism in more detail on two

broad fronts. First, we document the link between innovation and productivity. Second, we show

that, consistent with economic optimization, productive resources flow into the innovating firm away

14There exists a large literature on the importance of resource allocation for economic growth (see, e.g. Restuccia
and Rogerson (2008); Hsieh and Klenow (2009); Jones (2011); Acemoglu et al. (2011)).
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from firms that do not innovate. In both of these cases we perform our analysis both within and

across industries.

3.1 Firm-level evidence

We begin by exploring the productivity and reallocation dynamics subsequent to innovative activity

within an industry. In particular, we examine the response of productivity, Tobin’s Q and factor

demand to a firm’s own innovation activity, Af , and also to the innovation output of its competitors.

We construct our measure of innovation of a firm’s competitors, AIf as the average innovative

activity of all firms in the same industry excluding firm f , weighted by market capitalization S:

AIft =
∑

h6=f∈NIt

Avht

/ ∑
h6=f∈NIt

Sht. (16)

We define industries using 3-digit SIC codes.15 We explore the effect of innovation of a firm and its

competitors on various firm outcome variables, x, by estimating the regression

xft+1 = a0 + a1Aft + a2AIft + b Zft + γt + cI + ρ xft + uft+1. (17)

We include lags of the dependent variable, industry cI and year γt dummies, and a vector of controls

Z. We control for firm idiosyncratic volatility, σft, when using our truncated measure A+ because

the magnitude of the truncation bias increases with volatility. We control for firm size, measured as

either physical capital or number of employees, because large firms innovate more. In addition, one

source of concern is that unobservable variables at the firm or industry level jointly drive innovation

outcomes and the outcome variable x. Thus, depending on the specification, we control for firm

productivity, profitability, Tobin’s Q, and firm and industry stock returns. We present results with

and without these controls, and cluster the standard errors by firm.

We are interested in the estimates of a1 and a2, which capture the impact of innovation by the

firm and its competitors. A firm’s innovative output, Af , is highly skewed so we focus on inter-decile

movements in firm-level innovation to explore the economic magnitude of a1. In addition, the

innovation of other firms can have a positive or a negative effect on a firm’s outcome variables. An

increase in the innovative output of competing firms can have a positive effect on the firm because

of knowledge spill-overs. However, innovation of competitors can also have a negative effect due to

business stealing or an increase in factor prices. We should note that the presence of unobserved

variables that drive the common propensity of firms to innovate are likely to bias our estimate a2

upwards. For instance, common productivity shocks could impact many firms in the same industry –

thereby creating a positive correlation between innovative activity of a firm’s competitors and a

firm’s own productivity.

Productivity

First, we examine whether firms that innovate have higher productivity subsequent to innovative

activity. We consider both capital- and labor-productivity (mpkft andmplft), defined as firm output—

15We obtain quantitatively similar results when we define industries according to their 4-digit SIC.
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total sales plus change in inventories—divided by capital and number of employees, respectively.

We evaluate the relation between subsequent productivity of capital and labor and innovation by

a firm Af or its competitors AI by estimating (17) with xft = [logmpkft, logmplft]. Depending

on whether we focus on the productivity of capital or labor, we measure firm size as the stock of

physical capital or number of employees respectively.

We report the results in Panel A of Table 3. We find a substantial increase in firm-level

productivity subsequent to an innovation. Our estimates of a1 imply that an increase in innovation

by the firm from the 50th to the 90th percentile leads to an 0.6% to 1.5% increase in the productivity

of capital and a 1.7% to 2.1% increase in the productivity of labor. Furthermore, we find some

evidence that the business-stealing effect dominates, as the estimated coefficient a2 is negative and

statistically significant across specifications. In particular, a one-standard deviation increase in the

amount of innovation by the firm’s competitors is associated with a 1.5% to 1.9% decline in the

productivity of capital and a 1.5-1.8% decline in the productivity of labor. Our finding that labor

productivity increases following innovation, suggests that during our sample period, innovation is

more likely to be labor augmenting than labor saving on average (see, e.g. Acemoglu (2010)).

Our estimates imply that the business-stealing effect is substantial. However, this finding may

be an artifact of the short horizon considered in our analysis if the business-stealing effect and

positive spillovers operate at different frequencies. In particular, positive spillovers may affect firms

with a lag, so in the medium-run, the response of productivity may be different. To explore this

possibility, we estimate a dynamic version of equation (17) with k-year ahead productivity, xft+k, as

the regressand. We consider horizons of one to five years k = [1..5]. To conserve space, we present

results with only size, lagged productivity and volatility controls. Including additional controls leads

to quantitatively similar findings.

As we see in Figure 3, the negative effect of competitor innovation, AIf , on productivity is

stronger in the short run. As we increase the horizon k, the estimated coefficients a2(k) increase,

becoming zero or positive after 5 years. In contrast, the positive effect of firm innovation on

productivity increases with the horizon k. After 5 years, the response of productivity of capital

is between 37% to 50% higher than on impact. Labor productivity displays a similar, though

quantitatively stronger response. The positive effect of firm innovation on labor productivity

increases with the horizon by 65 percent.

In summary, our findings are consistent with the view that positive spillovers and business stealing

operate at different horizons. In the short run, firms that do not innovate when their competitors

do experience a decline in their productivity. However, in the medium run, the innovation of other

competitors has either a zero or a positive effect. This positive effect can arise because competitor

innovations affect the firm either directly, for instance through knowledge spillovers, or indirectly,

by spurring future firm innovation. Last, another possibility, which we explore below, is that the

firm scales down operations in response to innovation by competitors and therefore operates at a

higher marginal product of capital and labor.
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Tobin’s Q

Next, we explore the effect of innovation on the market value of the firm. In particular, the firm’s

Tobin’s Q should respond positively to a firm’s innovation output. The response of Q to the

innovation of the firm’s competitors will depend on whether the business-stealing or positive spillover

effects dominate in terms of market value. We estimate equation (17) with xft = [logQft] and

present the results in Panel B of Table 3.

We find that Tobin’s Q responds positively to a firm’s own innovation activity. Our estimates of

a1 imply that an increase in innovation by the firm from the 50th to the 90th percentile leads to an

1.5% to 1.6% increase in the firm’s Tobin’s Q. These magnitudes are in line with those reported

in Hall et al. (2005). In addition, we find some evidence of positive spillovers. A one standard

deviation increase in the innovation activity of other firms in the industry is associated with a 0.5%

to 0.7% increase in Tobin’s Q. However, we must be careful when interpreting this as evidence of

positive spillovers, given the fact that the coefficient a2 is likely to be biased upwards due to the

presence of unobservables, as we discuss above.

Reallocation

In this section we explore the reallocation dynamics subsequent to innovation by a firm. In particular,

we explore how our innovation measures are related to reallocation of physical capital and labor.

We focus on the firm’s investment and hiring rate. In addition, since adjusting a firm’s capital and

labor input often involves upfront costs, we explore the allocation of financial resources. We focus

on the net financial inflows to the firm, defined as new issuance of equity and debt minus payouts

to stock- and bond-holders.

We estimate equation (17), using firm investment, i, net hiring rate, h, and financial inflows, e,

as outcome variables xft = [ift, hft, eft]. As before, our main estimates of interest are a1 and a2,

which capture the change in factor inputs and financial inflows following innovation by the firm and

its competitors, respectively.

We first examine how physical capital gets reallocated subsequent to innovation by a firm or by

its competitors. Table 4 shows that subsequent to an innovation by a firm, there is a substantial

increase in its investment rate. In particular, our estimates imply that an increase in innovation by

the firm from the 50th to the 90th percentile leads to an increase in the firm’s investment rate by

0.5% to 1%. This increase is statistically but also economically significant given that the median

firm investment rate is 12% in our sample. Furthermore, we find evidence that physical capital flows

from firms that do not innovate to firms that do. If the firm does not innovate but its competitors

do, then its investment rate is substantially lower. A one-standard deviation increase in the level of

innovation by the firm’s competitors leads to a decline in the firm’s investment rate of 0.6-1.6%.

Next, we examine reallocation of labor subsequent to innovation by a firm. Table 5 shows that

subsequent to an innovation by a firm, there is a substantial increase in its employment using either

innovation measure. As before, the economic magnitudes are significant. Our estimates imply that

an increase in innovation by the firm from the 50th to the 90th percentile leads to increase in

employment of the firm by 0.2% to 0.5%, compared to the median firm-level hiring rate of 2.7%. In

addition, labor declines when a firm does not innovate but its competitors in the same industry do.
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A one-standard deviation increase in the average innovation of the firm’s competitors leads to a

reduction of 0.7% to 1.4% in the firm’s hiring rate. Our finding that innovating firms increase their

labor demand suggests that innovation is more likely to be labor augmenting, and is consistent with

the findings of Lentz and Mortensen (2008) for Danish firms.

Last, we examine the reallocation of financial capital subsequent to innovation by a firm and

present the results in Table 6. Following an innovation by a firm, there is a substantial increase

in its financial capital inflows. Our estimates imply that an increase in innovation by a firm from

the 50th to the 90th percentile leads to an increase of capital inflows to book assets of 0.5% to

0.9%, compared to the median level of zero capital flows. We also find that a firm is more likely to

increase payout and decrease new issuance when it does not innovate but its competitors do. In

particular, a one-standard deviation increase in the average innovation of the firm’s competitors

leads to a reduction of 0.8% to 1.6% in net financial capital flows to the firm. This negative effect

suggests that firms that fail to innovate in an industry where other firms do, have fewer investment

opportunities and thus increase their net payout to investors.

In summary, our results in this section suggest that, consistent with economic optimization,

resources are reallocated to innovating firms and away from firms that fail to innovate when their

competitors do. In addition, we find that relative to their median value, new hiring exhibits a

quantitatively stronger response than capital, both in terms of inflow and outflow. This increased

reallocation response of labor relative to firm capital within industries is consistent with the view

that capital is more firm-specific than labor.

3.2 Industry-level evidence

So far we have focused on the dynamics of productivity and reallocation within an industry. We now

conduct a similar exercise examining the response of productivity and reallocation of inputs at the

sector level. To do so, we use the KLEMS industry-level output data provided by Dale Jorgenson.

First, we document the dynamic response of capital and labor productivity, defined as the ratio of

the quantity of output to the quantity of capital and labor services, respectively. Second, we focus

on the reallocation of inputs, namely the growth rate in the quantity of capital and labor services.

Last, we explore the rate of establishment exit to our innovation measures, using information on

establishment exit rates at the industry level from the US Census tables on Business Dynamics

Statistics (BDS).

We estimate specifications similar to (17), but at the industry level:

xIt+1 = a0 + a1AIt + a2AMIt + b Zt + γt + ρ xIt + uIt+1. (18)

Here, AI is our measure of innovation at the firm-level, and AMI is the average level of innovation

in the economy, excluding industry I constructed in a manner similar to (16). Depending on the

specification, we include a vector of controls, Z, which includes stock return and, in the case of our

truncated measure A+, volatility, as well as lagged values of the dependent variable and time effects

γt. In the presence of time dummies γt, the interpretation of the coefficient a2 is unclear, so we only

include one of the two. We cluster the standard errors by industry.
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Productivity

First, we explore the dynamic response of industry productivity to its own innovation AI and the

innovation of the other industries AMI . We are interested in the coefficients a1 and a2, which

measure the response of productivity to an industry and economy-wide (excluding the given industry)

innovation shock respectively. The coefficient a1 is informative as to whether innovation creates net

value or is a zero-sum game that merely affects the distribution of rents within an industry. We

estimate (18) with k-period ahead productivity as the regressand, xft+1 = [logmpkft+k, logmplft+k].

We consider horizons of one to five years k = [1..5]. We plot the results in Figure 4, controlling

for lagged productivity and volatility. Controlling for firm- or industry-level stock returns leads to

similar results.

We find that both labor and capital productivity increase in response to own industry innovation.

A one-standard deviation AI shock is associated with a 2.5% increase in the productivity of capital

and labor, after a period of 5 years. By contrast, capital and labor productivity show no statistically

significant response to the innovation activity of other industries.

Reallocation and Creative Destruction

Next, we examine the response of capital and labor to an industry innovation shock, as well as

to the innovation of other industries. We estimate equation (18), using as the outcome variable

the growth rate in the quantity of capital and labor services xIt = [iIt, hIt]. As before, the main

estimates of interest in this specification are a1 and a2, which capture the change in the quantity of

factor inputs in response to innovation in the industry and the rest of the economy respectively. We

show our results in Table 7.

We find that an increase in the amount of industry innovation increases the quantity of capital

and labor services in the industry, though in some specifications the effect is not statistically different

from zero. As before, we find that the response of labor is greater than the response of capital. An

increase in industry innovation is associated with a 0.2% to 0.4% increase in capital services and a

0.3% to 0.7% increase in labor services. These magnitudes are economically significant, given that

the median growth in capital and labor services equals 3.1% and 0.7% respectively.

Our results suggest that increases in economy-wide innovation lead to cross-industry reallocation

of labor and capital. In particular, a one standard deviation increase in the economy-wide innovation

measure is associated with a 0.5% to 1.0% decline in the growth of capital services and a 1.4% to

2.2% decline in the growth of labor services.

We also examine patterns of firm exit at the industry level. If industry innovation spurs creative

destruction, we expect to find a positive relation between the rate of firm exit and the level of

industry innovation. In contrast, innovation in other industries should not affect the decision of

firms to exit a particular industry. We estimate specifications similar to (18), but we replace the

outcome variable with the rate of firm exit and examine the response of this variable to own industry

innovation AI and innovation of other industries AIM . Table 8 presents the results.

Industry innovation is accompanied by an increase in creative destruction. The estimated

coefficient a1 is positive and statistically significant across specifications. Innovation accounts for an

economically significant fraction of the variation in firm exit rates. A one standard deviation increase
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in industry innovation is associated with an increase in the firm exit rate by 0.2% to 0.4%, while

the unconditional volatility of exit rates is equal to 2.1%. In contrast, economy-wide innovation

AMI has no statistically significant effect on firm exit.

3.3 Innovation and long-run growth

The results of the previous two sections imply that innovation is followed by increased productivity

of capital and labor, as well as reallocation of resources towards innovating firms. These findings

suggest that own innovation should be followed by increased output growth, both at the firm as

well as at the industry level. The response of output to innovation by other firms or industries is

more ambiguous. It depends on whether productivity increases in the long run, as well as whether

the patterns of reallocation we document are reversed in the long run. To answer these questions,

we estimate specifications at firm and industry level similar to (17) and (18)

log yft+k = a0 + a1Aft + a2AIft + b Zft + ρ1 log yft + ρ2 log yft−1 + et+k, (19)

log yIt+k = a0 + a1AIt + a2AMIt + b ZIt + ρ1 log yIt + ρ2 log yIt−1 + et+k. (20)

We again examine horizons of k = 1 to k = 5 years. We control for stock return volatility (in the case

of our truncated measure A+). In the firm-level regression (19), we also include controls for firm size,

and industry and time fixed effects. We cluster the standard errors by firm or industry, respectively.

We plot the estimated coefficients a1(k) and a2(k) in Figure 5, along with 90% confidence intervals.

We find that both firm and industry output displays a statistically significant response to an

own-innovation shock. A firm that experiences an innovation shock from the median to the 90th

percentile experiences a 1.5% increase in output over a period of 5 years. The response of output is

quantitatively more significant at the industry level. A one standard deviation shock to industry

innovation is associated with a 5.0% output growth over a period of 5 years. Furthermore, a positive

innovation by other firms, or industries, is associated with a decline in output. Output falls by 2.5%

to 3.5% at the firm level, and by 3.5% to 6.8% at the industry level following innovation by other

firms or industries respectively. These findings suggest that part of the long-run increase in the

average productivity of capital and labor (see Figure 3) in response to competitor innovation AIf

may be the result of the firm scaling down operations.

In summary, innovation is associated with substantial subsequent increases in output. The

results of this section can also be summarized by examining the relation between industry innovation

in the first half of the sample (1960–1982) and subsequent output growth in the second half of the

sample (1983–2006). In Figure 6 we plot the industry innovation measure AI averaged over the first

half of the sample (1960–1982) on the X axis and the corresponding output growth of the industry

in the second half of the sample (1983–2006) on the Y axis. The correlation between the two series

is 41% with a robust t-statistic of 2.6. Industries which experienced high technological innovation

in the first half of the sample were also the ones whose growth rate was subsequently higher in

the second half of the sample. For example, industries such as Electrical Machinery, Automotive

and Communication, which are in the highest quartile of innovation during the first half of the
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sample, had an annualized growth rate of more than 4% over the second part of the sample. Similar

correlation is found for low-innovative industries such as Textile and Utilities.16

4 Innovation and Aggregate Dynamics

Our results in the previous section suggest that innovation is an important determinant of industry-

level productivity and growth, especially in the medium term. In this section, we analyze the effect

of innovation at the level of the U.S. economy.

4.1 Total Factor Productivity and Output

Impulse Responses

In this section, we examine the extent to which our innovation measures account for medium-run

fluctuations in aggregate productivity and output. We start by exploring the relation between

measures of innovation and quantities of interest using VARs and VECMs. Then, we explore whether

our results are sensitive to the details of the specification or the construction of our innovation

measures. We focus on aggregate productivity and output, with productivity measured using

utilization-adjusted TFP from Basu et al. (2006) and output measured as the real per capita gross

domestic product. Our aggregate innovation measures A+ and Â are constructed according to (14)

and (15).

We estimate bivariate VARs of the form Z = [logX, logA]′, where X is our variable of interest

and A is our measure of innovation. We include a deterministic trend, following Alexopoulos

(2011). When exploring the responses to our truncated innovation measure A+, we also include

the cross-sectional average of idiosyncratic volatility σ̄ to ensure that our innovation measure does

not pick up movements in firm-level volatility. In addition, we also compute responses using a

vector-error-correction model (VECM). We select the number of cointegrating relations using the

Johansen test, which suggests the presence of one cointegrating relation in all systems. We select

the number of lags using the Akaike-Information Criterion, which advocates a lag length of one to

two years for each of the systems. We compute standard errors by a bootstrap simulation of 500

samples. We plot the impulse-response functions in Figures 7 and 8, along with 90% confidence

intervals. We compute impulse responses by ordering the innovation shock A last, so the technology

shock affects the variables of interest only with a lag.

We find that TFP increases by 0.8% to 2% over 8 years following a one-standard deviation

increase in innovation output. The forecast error variance attributed to our innovation measures

ranges from 17% to 70% at the 8-year horizon, depending on the specification. Our findings are

comparable to the results in Alexopoulos (2011), but in contrast to Shea (1999) who uses only

information on patents and finds a negative relation.

16One source of concern with our analysis could be that the relation between innovation and output growth is driven
by omitted variables. To alleviate these concerns we generate exogenous changes in R&D activity across industries by
employing the Bloom et al. (2010) instrument for firm-level R&D activity. As discussed in Bloom et al. (2010), the
firm-level tax price of R&D can be decomposed into a component that is relatively exogenous since it is based solely
on federal rules. In unreported tests we use the Bloom et al. (2010) firm-level R&D instrument and construct its
industry counterpart by taking the average of this tax price across firms in a given industry. We find qualitatively
similar results to those reported in the table when we instrument the endogenous innovation variables (A).
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Aggregate output displays a mild U-shaped response. In the first two years, the response of

output to a one-standard deviation shock is negative at 0.5% to 0.8% and statistically significant.

However, output increases in the long run by a substantial amount: a one-standard deviation

innovation shock results in a net 1.5% to 4% increase in aggregate output after 8 years. The share

of 8-year forecast-error variance attributed to our innovation measures ranges from 7% to 16%.

Last, we explore whether our measure of innovation contains incremental information to stock

prices. Following Beaudry and Portier (2006), we include the level of the stock market in our VAR,

scaled by the consumption deflator and population.17 This helps us evaluate the extent to which

our results are driven by variation in the denominator of A (the stock market capitalization). We

order the level of stock prices second, so now Zt = [log(Xt), log(Mt), log σt, log(At)]
′. Our results

are qualitatively similar in terms of statistical significance, but the economic magnitudes are smaller.

Productivity and output increase by 0.8 and 2.6% respectively at the peak following a one-standard

deviation innovation shock. In contrast, the response of output to a one-standard deviation shock

in logM is not statistically significant beyond the one-year horizon. Furthermore, the innovation

shock accounts for a comparable fraction of the variance of productivity (2.7-18.9%) and output

(7.0-15.7%) relative to the stock market shock (7.9-8.3% and 4.7-5.1%, respectively). Hence, our

innovation shock contains incremental information about future productivity and output to the level

of the stock market. We report the full set of results in the Online Appendix (Figures 3 and 4).

Comparison to Patents or R&D capital

We explore whether our measure of innovation contributes information relative to other commonly

employed measures of technological innovation: the stock of R&D capital, and the log number of

patents. We estimate bivariate VARs for productivity and output, with the log number of patents

or R&D capital series ordered last. The number of patents has some ability to predict TFP, but the

results are quantitatively weaker. A one-standard deviation shock to the log number of patents is

associated with a 0.4% increase in TFP, and the patent shock accounts for 13.1% of the forecast

error variance. Output shows no statistically significant response to number of patents. In contrast,

R&D Capital has some ability to predict output, but not productivity. Output drops in the short

run by 0.4%. At the eight-year horizon output displays a statistically significant increase of 0.3%.

See the Online Appendix (Figure 5) for the full set of results.

Granger causality

If our measure of innovation indeed represents a fundamental shock, then it should not be predictable

by output or productivity. In addition, we explore whether our measure of innovation is predictable

by other measures of technological growth in the literature, for instance the book-based measures of

Alexopoulos (2011) and the stock of R&D capital.

The top panel of Table 9 shows that output and TFP do not Granger-cause either of our measures

of innovation. In addition, the middle panel of Table 9 shows that our measures of innovation are

distinct from the measures of Alexopoulos (2011), in that neither causes the other. Our measure is

17We depart from Beaudry and Portier (2006) in that we include the level of the CRSP value-weighted rather the
level of the S&P 500 index, since the former includes all stocks traded on the three major exchanges.
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somewhat correlated with the number of patents at 32-43%, but not with R&D spending (less than

10%). The bottom panel of Table 9 shows that our measure is not Granger-caused by either the

number of patents or R&D spending.

4.2 Consumption

Next, we analyze the impulse response of aggregate consumption to our innovation measures. The

response of consumption is informative about whether our innovation measure is an example of an

embodied or disembodied shock. If technological innovation is a free factor of production, in that it

affects all firms in the manner of a disembodied shock, we expect that consumption should increase

immediately. Agents anticipating an increase in future consumption would like to increase their

consumption today. In contrast, if innovation is not free, because for instance it is embodied in

new vintages of capital or due to adoption costs, then consumption may only increase in the long

run. In the short run, agents will divert resources away from consumption towards adopting new

innovations.

We analyze the response of real per capita consumption of non-durables and services using VARs

and VECMs, as in Section 4.1. We plot the impulse-response functions in Figure 9, along with 90%

confidence intervals. We find that consumption displays a U-shaped response to innovation. In the

first two years consumption displays a statistically significant drop of 0.5% to 0.7%. Subsequently,

consumption increases, leading to a 0.2% to 0.5% net increase after 8 years. However, the increase

in consumption is not consistently statistically significant across specifications. The innovation

shock accounts for 6% to 8% of the forecast-error variance of consumption growth after 8 years.

The short-run decline in consumption is consistent with the delayed response of output in

Section 4.1. Innovation affects output with a lag, so the positive response of consumption is

necessarily delayed. However, our finding that consumption declines in the short run, whereas

output does not, suggests presence of significant adoption costs.

4.3 Innovation and Tobin’s Q

We conclude our analysis by examining the relationship between our measures of innovation and

Tobin’s Q at the aggregate level. The theoretical relation between innovation and Tobin’s Q is

ambiguous. If innovation represents an increase in TFP that costlessly affects all firms, then standard

models will imply that average Tobin’s Q should rise (see, e.g. Hayashi (1982)). However, it is also

possible that innovation renders part of the capital stock obsolete (see e.g. Laitner and Stolyarov

(2003)) or a reduction in profits for incumbent firms (e.g. Greenwood and Jovanovic (1999); Hobijn

and Jovanovic (2001); Garleanu, Kogan, and Panageas (2012)). In these cases the relationship

between innovation and average Tobin’s Q is less clear.

We estimate the contemporaneous response of Tobin’s Q to our innovation measures

∆ logQt = a+ b∆ logAt + cZt + et, (21)

where the vector of controls includes lagged values of Q, our innovation measure A and in the case of

our truncated measure A+ changes in the cross-sectional average of idiosyncratic volatility, ∆ log σ.
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We show the results in Panel A of Table 10. We find that our innovation measure is negatively

correlated with average Q. This negative correlation is statistically and economically significant. A

one standard deviation increase in innovation is associated with a 8.1% to 12% contemporaneous

drop in aggregate Tobin’s Q. Our findings echo the stylized facts reported in Greenwood and

Jovanovic (1999), Hobijn and Jovanovic (2001) and Laitner and Stolyarov (2003), who argue that

Tobin’s Q was too low in the 1960s and 1970s, despite the technological advances taking place.

One source of concern is that our aggregate innovation measure A may be mechanically negatively

related to Q due to our choice of scaling by the market capitalization of all firms S. As a robustness

test, we scale our aggregate innovation measure by the market capitalization of innovating firms,

SIt =
∑

f∈Nt
Sft × 1Aft>0. Thus, this alternative normalization ameliorates somewhat the concern

that this finding is mechanical. However, as we show in Panel B of Table 10, we obtain similar

results using this alternative normalization.

5 Conclusion

We explore the role of technological innovation as a source of economic growth by constructing

direct measures of innovation at the firm level. We combine patent data for US firms from 1926 to

2010 with the stock market response to news about patents to identify the economic importance of

each innovation. Our measures allow us to uniquely identify the reallocation and growth dynamics

within- and across industry after bursts of innovative activity.

We document a strong link between innovation and productivity at the firm and industry level.

Our evidence suggests that innovation is accompanied by “creative destruction” in the form of

resource reallocation, both within and between sectors. Resources flow to innovating firms and

sectors, away from firms and sectors that do not innovate. There are stronger patterns of reallocation

for labor than for capital, consistent with the view that capital is more specific than labor (Ramey

and Shapiro, 2001).

Technological innovation has a significant impact on aggregate variables in the medium run.

Our innovation measure is strongly related to aggregate movements in TFP. In addition, aggregate

output shows a delayed positive response, consistent with the presence of short-term adoption costs.

A positive shock to innovation has a U-shaped effect on consumption growth: consumption is lower

in the short run but increases in the long run. This is consistent with a reallocation of resources

away from consumption in the short run towards the implementation of innovation. Finally, we find

that an increase in innovative activity leads to a fall in aggregate Tobin’s Q, consistent with the

models of Greenwood and Jovanovic (1999), Laitner and Stolyarov (2003), and (Garleanu et al.,

2012).

Our empirical findings link medium-run macroeconomic fluctuations to a direct measure techno-

logical innovation, consistent with the idea of medium-term cycles of Comin and Gertler (2006).

Furthermore, our findings make a strong case for innovation as a source of long-run firm growth,

consistent with the equilibrium model of Klette and Kortum (2004).
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Tables

Table 1: Number of future citations and announcement day return

Number of cites

grant publication

Number of cites

grant publication
l = 2 l = 4 l = 2 l = 4 l = 2 l = 4 l = 2 l = 4
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A Panel B

A+
i 0.112 0.087 0.038 0.027 Âi 1.400 0.990 0.277 0.193

Change in firm value, (6.53) (6.28) (2.35) (2.42) Change in firm value, (6.74) (6.77) (1.68) (1.66)
truncated at zero adj. for meas. error

Obs. 1842345 1842345 416282 416282 Obs. 1828616 1828616 415254 415254
R2 0.096 0.096 0.079 0.079 R2 0.100 0.099 0.079 0.079

Panel C Panel D

logAi 0.704 0.695 0.252 0.256 log Âi 0.939 0.941 0.297 0.297
Change in firm value, (7.11) (6.99) (3.01) (2.93) Change in firm value (7.80) (7.82) (2.76) (2.74)
log adj. for meas. error, log

Obs. 894697 894697 202194 202194 Obs. 1828616 1828616 415254 415254
R2 0.099 0.101 0.083 0.082 R2 0.102 0.102 0.084 0.084

Table shows output of a regressions of number of future citations Ni on the dollar return Ai following the day the

patent is issued to the firm (columns 1-2, 5-6) or the details of the patent are disclosed by the USPTO (columns 3-4,

7-8). We construct the change in firm value Ai as the return of the firm minus the return of the market portfolio

rfd, times the firm’s market capitalization on the day before the announcement in 1982 US dollars (billion) Sfd−1.

We report results for three-day (l=2) and five-day (l=4) windows. Panel A shows results for change in firm value,

truncated at zero; Panel B shows results for change in firm value, adjusted for measurement error; Panels C and D

show corresponding results using log changes in firm value. We control for grant-year or announcement-year fixed

effects and log firm idiosyncratic volatility (log σft). We cluster standard errors by announcement year and report

t-statistics in parenthesis.

Table 2: Descriptive statistics on firm-level innovation variables

statistic A+
ft Âft

Mean 0.055 0.044
St. Dev. 0.169 0.129

Percentiles
50 0.000 0.000
75 0.014 0.024
90 0.172 0.129
95 0.339 0.250

Table presents descriptive statistics for our firm-level innovation measures A+ and Â.
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Table 3: Firm-level productivity and Tobin’s Q

mpkt+1, mplt+1

A. Productivity
qt+1

B. Tobin’s Q
Capital Labor

(1) (2) (3) (4) (5) (6)

A+
It -0.066 -0.049 -0.057 -0.046 A+

It 0.031 0.030
(-6.68) (-5.03) (-6.35) (-5.12) (2.69) (2.62)

A+
ft 0.060 0.091 0.108 0.128 A+

ft 0.095 0.098

(5.77) (8.64) (11.71) (13.73) (7.13) (7.33)

R2 0.844 0.847 0.847 0.850 R2 0.684 0.686

ÂIt -0.087 -0.049 -0.084 -0.056 ÂIt 0.039 0.048
(-6.27) (-3.56) (-6.72) (-6.47) (2.62) (3.16)

Âft 0.053 0.102 0.132 0.163 Âft 0.128 0.114
(3.70) (7.02) (10.41) (12.58) (7.08) (6.32)

R2 0.844 0.847 0.847 0.850 R2 0.684 0.686

Observations 125678 125678 120020 120020 Observations 123540 123540
Fixed Effects I,T I,T I,T I,T Fixed Effects I,T I,T
Controls Controls
(Size, mpk or mpl) Y Y Y Y (Size) Y Y
(Rf , RI , q, σ) - Y - Y (R, RI , y/k, σ) - Y

Table shows output of the regression: xft+1 = a0+a1Aft+a2AIt+b Zft+γt+cI +ρ xft+uit, where Xft = [yKft, y
L
ft, qft]

is log productivity of capital, labor and Tobin’s Q. Depending on the specification, the vector Z of controls includes

lagged values of log Tobin’s Q, firm stock return (R), firm volatility (σ, in the case of our truncated measure A+

only), industry cI or time γt fixed effects. We control for lagged firm size (log capital (Columns 1-2,5-6) or number

of employees (Columns 3-4)) and productivity throughout. Standard errors are clustered by firm. All variables are

winsorized by year at the 1% level.

Table 4: Firm-level reallocation: Investment

it+1 (1) (2) (3) (4) (5)

A+
It−1 -0.046 -0.046 -0.040 -0.031 -0.027

(-10.35) (-10.45) (-12.10) (-9.78) (-8.49)

A+
ft−1 0.039 0.047 0.042 0.040 0.031

(9.13) (11.02) (13.29) (12.79) (10.14)

R2 0.085 0.093 0.221 0.260 0.273

ÂIt -0.070 -0.059 -0.042 -0.036
(-12.27) (-13.52) (-9.92) (-8.50)

Âft 0.040 0.034 0.041 0.039
(7.10) (8.23) (9.96) (9.66)

R2 0.085 0.215 0.257 0.273

Observations 126727 126727 126727 126727 126727
Fixed Effects I,T I,T I,T I,T I,T
(Size - K) Y Y Y Y Y
(σ) - Y Y Y Y
(it−1) - - Y Y Y
(Rf , RI , Q) - - - Y Y
(MPK,ROA) - - - - Y

Table shows output of regressing firm investment it, defined as capital expenditures (Compustat capx) over lagged

capital stock (Compustat ppegt), on our firm-level innovation measure Af and innovation of other firms in the

same industry AI . Depending on the specification, we control for lagged values of log Tobin’s Q, firm size (log

capital), sales-to-capital (MPK), earnings to assets (ROA), firm stock return (R), firm volatility (σ, in the case of

our truncated measure A+ only), industry (I) or time (T) fixed effects, and lagged values of the dependent variable.

Standard errors are clustered by firm. All variables are winsorized by year at the 1% level. In column (2), we only

control for return volatility when we use our truncated measure. Controlling for return volatility using our measure

adjusted for measurement error leads to quantitatively similar results.
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Table 5: Firm-level reallocation: Labor hiring
∆nt+1 (1) (2) (3) (4) (5)

A+
It−1 -0.045 -0.046 -0.046 -0.033 -0.024

(-7.35) (-7.60) (-7.93) (-5.92) (-4.30)

A+
ft−1 0.008 0.016 0.024 0.020 0.017

(1.37) (2.80) (4.41) (3.61) (3.05)

R2 0.039 0.044 0.053 0.086 0.090

ÂIt -0.062 -0.063 -0.040 -0.029
(-7.65) (-8.18) (-5.22) (-3.74)

Âft -0.008 0.014 0.020 0.017
(-0.97) (1.83) (2.71) (2.25)

R2 0.039 0.053 0.086 0.090

Observations 119760 119760 119760 119760 119760
Fixed Effects I,T I,T I,T I,T I,T
(Size - H) Y Y Y Y Y
(σ) - Y Y Y Y
(∆nt−1) - - Y Y Y
(Rf , RI , Q) - - - Y Y
(MPL,ROA) - - - - Y

Table shows output of regressing firm log employment growth ∆nt+1 (Compustat item emp), on our firm-level

innovation measure Af and innovation of other firms in the same industry AI . Depending on the specification, we

control for lagged values of firm size (log no. of employees), sales-to-employees (MPL), earnings to assets (ROA),

firm stock return (R), firm volatility (σ, in the case of our truncated measure A+ only), industry (I) or time (T)

fixed effects, and lagged values of the dependent variable. Standard errors are clustered by firm. All variables are

winsorized by year at the 1% level. In column (2), we only control for return volatility when we use our truncated

measure. Controlling for return volatility using our measure adjusted for measurement error leads to quantitatively

similar results.

Table 6: Firm-level reallocation: Financial inflows
eft+1 (1) (2) (3) (4) (5)

A+
It−1 -0.007 -0.006 -0.008 -0.001 -0.009

(-1.28) (-1.22) (-1.84) (-0.32) (-2.08)

A+
ft−1 0.043 0.037 0.034 0.025 0.014

(6.80) (5.90) (6.30) (4.56) (2.81)

R2 0.114 0.117 0.155 0.184 0.219

ÂIt -0.017 -0.017 -0.005 -0.018
(-2.32) (-2.68) (-0.82) (-2.86)

Âft 0.052 0.046 0.048 0.022
(6.03) (6.25) (6.28) (3.09)

R2 0.114 0.154 0.182 0.219

Observations 126727 126727 126727 126727 126727
Fixed Effects I,T I,T I,T I,T I,T
(Size - K) Y Y Y Y Y
(σ) - Y Y Y Y
(∆finft−1) - - Y Y Y
(Rf , RI , Q) - - - Y Y
(ROA) - - - - Y

Table shows output of regressing firm financial inflows, defined as debt issuance plus equity issuance minus payout

(Compustat sstk + dltis - prstkc-dv-dltr) over book assets, on our firm-level innovation measure Af and innovation of

other firms in the same industry AI . Depending on the specification, we control for lagged values of firm size (log

capital), log Tobin’s Q, earnings to assets (ROA), firm stock return (R), firm volatility (σ, in the case of our truncated

measure A+ only), industry (I) or time (T) fixed effects, and lagged values of the dependent variable. Standard

errors are clustered by firm. All variables are winsorized by year at the 1% level. In column (2), we only control for

return volatility when we use our truncated measure. Controlling for return volatility using our measure adjusted for

measurement error leads to quantitatively similar results.
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Table 7: Industry reallocation

xt+1 Quantity of capital services, growth Quantity of labor services

A+
It 0.018 0.015 0.026 0.022 0.024 0.032 0.031 0.039

(2.02) (1.78) (3.11) (2.49) (1.42) (1.88) (1.82) (2.35)
A+

MIt -0.112 -0.069 -0.274 -0.207
(-7.21) (-3.72) (-7.56) (-4.60)

R2 0.037 0.098 0.165 0.184 0.051 0.080 0.164 0.186

ÂIt 0.023 0.015 0.032 0.027 0.021 0.036 0.029 0.043
(1.99) (1.39) (2.83) (2.24) (0.94) (1.73) (1.34) (2.09)

ÂMIt -0.153 -0.126 -0.263 -0.239
(-8.77) (-4.31) (-6.35) (-5.49)

R2 0.048 0.094 0.164 0.184 0.033 0.072 0.163 0.183
Observations 1395 1395 1395 1395 1395 1395 1395 1395
Controls
(R, σ) - Y - Y - Y - Y
Time Effects - - Y Y - - Y Y

Table reports results from a regression of the quantity [k, n] of capital and labor services on the amount of innovation
at the industry level [AI ] and on the amount of innovation of all other industries [AMI ]. We control for time effects
(T), industry stock return RI , industry volatility σI (in the case of our truncated measure A+ only) and one lag of
the dependent variable. Data is from Dale Jorgenson’s 35-sector KLEM, described in Jorgenson and Stiroh (2000).
Sample is 1960-2005 and covers 31 industries after excluding the finance, utilities and government enterprises sector.
We report t-statistics in parenthesis, with standard errors clustered by industry.

Table 8: Innovation and Firm Exit

xt+1 Rate of establishment exit

A+
It 0.882 0.881 1.057 0.746

(3.48) (3.45) (2.49) (1.85)

A+
MIt -2.740 -2.778

(-1.52) (-1.49)
R2 0.502 0.502 0.732 0.763

ÂIt 1.313 1.322 2.227 2.171
(2.14) (2.20) (3.31) (2.94)

ÂMIt -4.691 -4.745
(-1.32) (-1.38)

R2 0.509 0.510 0.732 0.735
Observations 231 231 231 231
Controls
(R, σ) - Y - Y
Time Effects - - Y Y

Table reports results from a regression of the rate of establishment exit on the amount of innovation at the industry
level [AI ] and on the amount of innovation of all other industries [AMI ]. We include industry fixed effects throughout.
Depending on the specification, we include time effects (T), industry stock return RI , and industry volatility σI (in
the case of our truncated measure A+ only). Data is from the tables of Business Dynamics Statistics at the US
Census, and cover 7 industries, after dropping the finance sector and utilities, over the period 1977 to 2009. Industries
correspond to the one-digit SIC code level. We report t-statistics in parenthesis, with standard errors clustered by
year.
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Table 9: Granger causality tests

Variable
Variable does A does
not Granger not Granger

cause A cause variable

A Â A Â

Output and productivity
Productivity 0.246 0.634 0.006 0.001
Output 0.523 0.121 0.068 0.848

Technology measures of Alexopoulos (2011)
Bowkers technology books 0.236 0.224 0.131 0.704
Library of Congress new technology books 0.111 0.005 0.615 0.647
Computer software and hardware books 0.386 0.477 0.579 0.245
Computer software, hardware, and network books 0.383 0.484 0.626 0.245
Telecommunications books 0.501 0.962 0.237 0.054

Other technology measures
R&D Spending 0.672 0.988 0.448 0.456

Table features p-values of Granger causality tests, based on a 3-variable VAR [Xt, σt, At] with a deterministic trend.

Table 10: Innovation and Tobin’s Q

∆ logQt A. Benchmark Measure B. Alt. Normalization

∆ logA+
t -0.182 -0.256 -0.218 -0.199 -0.194 -0.143

(-4.88) (-6.14) (-3.91) (-5.09) (-4.89) (-2.66)
R2 0.253 0.373 0.387 0.266 0.297 0.305

∆ log Ât -0.185 -0.223 -0.196 -0.188
(-3.87) (-4.17) (-3.83) (-3.67)

R2 0.188 0.266 0.186 0.223
Observations 58 58 58 58 58 58
(logAt−1) - Y Y
(logQt−1) - Y Y
(∆ log σt) - - Y

Table shows output of a regression of changes in log Tobin’s Q at the firm (Panel A) or aggregate level (B) on our

measure of innovation, controlling for changes in volatility (in the case of our truncated measure A+ only) and lagged

value of Q and innovation measures. Sample is 1952-2008. Results in Panel A use data from Compustat, include

time-fixed effects and standard errors clustered at the firm level. Results in Panel B use data from the flow of funds,

and standard errors are computed using the Newey-West estimator.
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Figure 1: Some illustrative examples
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(a) Patent 4,946,778 granted to Genex on Aug, 7 1990, “Single
Polypeptide Chain Binding Molecules.”

(b) Patent 5,585,089 granted to Protein Design on Dec 17, 1996,
“Humanized Immunoglobulins.”
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(c) Patent 6,317,722 granted to Amazon.com on Nov 13, 2001,
“Use Of Electronic Shopping Carts To Generate Personal Recom-
mendations.”

(d) Patent 4,345,262 granted to Canon on Aug 17, 1982, “Ink Jet
Recording Method.”

Figure plots cumulative abnormal returns (left axis) and turnover (right axis) around the date the patent is granted

for illustrative examples discussed in the text. Volume data is not available for Canon. Note that Canon reported a

6% fall in pre-tax profits on Aug 19 (two days subsequent to the patent grant).
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Figure 2: Aggregate measures of innovation
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Figure plots log values of a) our measure of innovation A+ (solid line) and Â (dotted line) ; b) total number of patents

granted; c) R&D Capital stock (from BEA); d) number of new technology books in the Library of Congress (from

Alexopoulos (2011)).
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Figure 3: Firm productivity – Dynamic response
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Figure plots coefficients a1(k) and a2(k) (and 90% confidence intervals) of a regression of long-run capital (left

panel) or labor (right panel) firm-level productivity on innovation of firm (Af ) and competitors (AI): yft+k =

a0 + a1(k)Aft−1 + a2(k)AIt−1 + β(k)Zft−1 + ρ(k) yft−1 + uit. The vector Z of controls includes lagged values of firm

size (log capital or number of employees), log Tobin’s Q, firm stock return (R), firm volatility (σ, in the case of our

truncated measure A+ only), industry (I) or time (T) fixed effects. More details on estimation are in the text. Grey

lines correspond to results using our measure of innovation A+ based on simple truncation; black lines correspond to

results using our measure of innovation Â that accounts for measurement error.
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Figure 4: Industry productivity – Dynamic response
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(c) Labor productivity to own innovation AI (d) Labor productivity to aggregate AM

Table plots coefficients from a regression of log output y relative to aggregate output, capital mpk and labor productivity

mpl on amount of innovation AI at the industry level, and the aggregate amount of innovation excluding that industry

AM . Controls include industry stock return; industry volatility (in the case of our truncated measure A+ only); lagged

capital productivity (panels a and b); lagged labor productivity (panels c and d); and lagged output growth (panels e

and f); Data is from Dale Jorgenson’s 35-sector KLEM. We plot coefficient estimates and 90% confidence intervals

using standard errors clustered by industry. Grey lines correspond to results using our measure of innovation A+

based on simple truncation; black lines correspond to results using our measure of innovation Â that accounts for

measurement error. Right hand-side variables are standardized to unit standard deviation.
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Figure 5: Firm and industry output – Dynamic response
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Figure plots coefficients a1(k) and a2(k) (and 90% confidence intervals) of a regression of long-run capital (left

panel) or labor (right panel) firm-level productivity on innovation of firm (Af ) and competitors (AI): yft+k =

a0 + a1(k)Aft−1 + a2(k)AIt−1 + β(k)Zft−1 + ρ(k) yft−1 + uit. The vector Z of controls includes lagged values of firm

size (log capital or number of employees), log Tobin’s Q, firm stock return (R), firm volatility (σ, in the case of our

truncated measure A+ only), industry (I) or time (T) fixed effects. More details on estimation are in the text. Grey

lines correspond to results using our measure of innovation A+ based on simple truncation; black lines correspond to

results using our measure of innovation Â that accounts for measurement error.
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Figure 6: Innovation and Industry Growth
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Figure plots the average output growth rate of 34 industries during the 1983-2006 period, versus the amount of

innovation in 1960-1982. We use our innovation measure adjusted for measurement error Â. Data is from Dale

Jorgenson’s website. Output is measured as value added in constant prices.
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Figure 7: Impulse responses, Productivity
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0 1 2 3 4 5 6 7 8
−0.005

0

0.005

0.01

0.015

0.02

0.025

Years
0 1 2 3 4 5 6 7 8

0

0.005

0.01

0.015

0.02

0.025

0.03

Years

(c) VECM, A+ (d) VECM, Â

Figure shows impulse response of productivity from a VAR (top) and VECM (bottom). We obtain impulse responses

by ordering our innovation measure last. Panels a and c present results using our measure of innovation A based on

simple truncation. Panels b and d present results using our measure of innovation Â that accounts for measurement

error. We include a deterministic trend in all specifications. We select lag length based on the AIC criterion. In panels

a and c we include the log cross-sectional average of idiosyncratic volatility. Dotted lines represent 90% confidence

intervals using standard errors are computed using 500 bootstrap simulations.
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Figure 8: Impulse responses, Output
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Figure shows impulse response of output from a VAR (top) and VECM (bottom). We obtain impulse responses by

ordering our innovation measure last. Panels a and c present results using our measure of innovation A based on

simple truncation. Panels b and d present results using our measure of innovation Â that accounts for measurement

error. We include a deterministic trend in all specifications. We select lag length based on the AIC criterion. In panels

a and c we include the log cross-sectional average of idiosyncratic volatility. Dotted lines represent 90% confidence

intervals using standard errors are computed using 500 bootstrap simulations.
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Figure 9: Impulse responses, Consumption
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0 1 2 3 4 5 6 7 8
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Years
0 1 2 3 4 5 6 7 8

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Years

(c) VECM, A+ (d) VECM, Â

Figure shows impulse response of output from a VAR (top) and VECM (bottom). We obtain impulse responses by

ordering our innovation measure last. Panels a and c present results using our measure of innovation A based on

simple truncation. Panels b and d present results using our measure of innovation Â that accounts for measurement

error. We include a deterministic trend in all specifications. We select lag length based on the AIC criterion. In panels

a and c we include the log cross-sectional average of idiosyncratic volatility. Dotted lines represent 90% confidence

intervals using standard errors are computed using 500 bootstrap simulations.
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A Patent Data

Our measure of innovation relies on using information on patents that a firm creates and the stock

market response to news about these patents. We now discuss the data that we employ in our

analysis.

Patents in the United States are granted by the United States Patent and Trademark Office

(USPTO). We download the entire history of U.S. patent documents from Google Patents.1 Each of

about 7.8 million patent files was downloaded using an automation script.2

To construct our measure of innovation, we match all patents in the Google data to corporations

whose returns are in the CRSP database. Patent regulations require that only an individual, not a

corporation, can be an inventor. However, the inventor can assign the granted property rights to a

corporation or another person. Therefore, when patents are granted they always have an inventor,

and sometimes an “assignee”, that is, one or more corporations or persons.

For most patents, Google provides a text version of the patent document, created using OCR

software. We use this text version of the document to extract the names of corporations to

which patents are assigned. However, OCR technology is imperfect, and many of the downloaded

documents include a great deal of garbled text. We therefore make use of a number of text analysis

algorithms to extract relevant information from the documents.

Our sample covers patents granted between 1926 and 2010 matched to firms with returns in

CRSP database. Since we merge our patent data with data on stock returns, we are limited to the

period after 1926, when the CRSP database begins.

1http://www.google.com/patents

2Google also makes available for downloading bulk patent data files from the USPTO. The bulk data does not have
all of the additional “meta” information including classification codes and citation information that Google includes in
the individual patent files. Moreover, the quality of the text generated from Optical Character Recognition (OCR)
procedures implemented by Google is better in the individual files than in the bulk files provided by the USPTO. As
explained below, this is crucial for identifying patent assignees.

http://www.google.com/patents


Matching patents to firms

Here, we briefly discuss the steps our matching procedure followed, and provide extensive details

Section C. We search the document for the words “assignee” or “assigned” and extract the text that

immediately follows. This text is either a company name, or the name of an individual to whom the

patent is assigned. We then count the number of times each assignee name appears across all patent

documents. We compare each assignee name to more common names, and if a given name is “close”,

in the sense of the Levenshtein distance, to a much more common name, we substitute the common

name for the uncommon name.3 For example, one of the most common names is “General Electric

Company”, which is associated with over 43,000 patents. We substitute this name for the far less

common, but quite similar, names “General Electbic Oohpany”, “General Electbic Cqhpany”, and

“Genebal Electbic Compakt”.

At this point, we have an assignee name for each patent. These names must be matched to

a company identifier such as the CRSP permco. This is accomplished in two steps. We begin by

looking only at patents that are also in the NBER database. For each assignee name identified

in the steps above, we count how many different permcos are matched to patents in the NBER

database. For example, all of the patents with an assignee name “General Electric Company” are

matched to one permco in the NBER database. We can therefore safely assume that all of the

patents assigned to the General Electric Company can be matched to that permco, even for patents

not included in the NBER data. Remaining assignee names are matched to CRSP firm names using

a name matching algorithm.4 The algorithm uses a score based on the inverse word frequency to

match assignee names to possible company names. For example, the word “American” is quite

common in company names, and so contributes little to name matching; the word “Bausch” is quite

uncommon, so it is given much more weight. Visual inspection of the matched names confirms very

few mistakes in the matching.

Extracting patent citations

We extract patent citations from three sources. First, all citations for patents granted between 1976

and 2011 are contained in text files available for bulk downloading from Google. These citations

are simple to extract and likely to be free of errors, as they are official USPTO data. Second, for

patents granted before 1976, we extract citations from the OCR text generated from the patent files.

We search the text of each patent for any 6- or 7-digit numbers, which could be patent numbers.

We then check if these potential patent numbers are followed closely by the corresponding grant

date for that patent; if the correct date appears, then we can be certain that we have identified

a patent citation. Since we require the date to appear near any potential patent number, it is

3The Levenshtein distance is the number of edits required to make one string match another string, where an edit
is inserting, deleting, or substituting one character.

4The algorithm is based on code written by Jim Bessen, available at http://goo.gl/m4AdZ.
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unlikely that we would incorrectly record a patent citation – it is far more likely that we would fail

to record a citation than record one that isn’t there. Third, we complement our citation data with

the hand-collected reference data of Nicholas (2008). See Section C of this Appendix for a detailed

explanation of this process.

Summary statistics

We now provide some statistics that lend credence to our method for extracting patent information.

Table 1 shows the number of patents we match to companies. Of the 6.2 million patents granted in

or after 1926, we find the presence of an assignee in 4.4 million. The matching procedure provides

us with a database of 1.9 million matched patents, of which 523,301 (27%) are not included in the

NBER data. Figure 1 graphs the total number of patents matched by the year the patent was

granted. Patents included in the NBER data, which is the most comprehensive database previously

available, are shown in light shading. Patents unique to our database are presented in dark shading.

Note that the two sets of data appear to fit together fairly smoothly, and that even during the

period covered by the NBER data, our database adds an average of 2,187 patents to the NBER

data.5

Table 2 provides additional summary statistics. Overall, our data provides a matched permco

for 66% of all patents with an assignee, or 31% of all granted patents. By comparison, the NBER

patent project provides a match for 32% of all patents from 1976–2006, so our matching technique

works quite well, even using only data extracted from OCR documents for the period before the

NBER data. Another point of comparison is Nicholas (2008), who uses hand-collected patent data

covering 1910 to 1939. From 1926–1929, he matches 9,707 patents, while our database includes

8,858 patents; from 1930–1939 he has 32,778 patents while our database includes 47,036 matches

during this period.

B Other Data

Stock Market and Financial Data

The return data used to assess the stock market response to news about patents are from CRSP

over the period 1926–2010. In several of our analyses we use financial and accounting data that

are from Compustat. The sample in these cases is determined by the availability of Compustat

data (available from 1951 onwards). As is standard, we omit financial firms and utilities from our

analysis.

5We use information on the patent-assignee match in the NBER data to assist with our matching, so the match
during the overlapping period is mostly the same, by construction. An exception is for cases where there is apparently
a mistake in the NBER match and our patent-assignee frequency-based matching system corrects an error.
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Business-cycle data

Productivity is utilization-adjusted TFP from Basu, Fernald, and Kimball (2006). Populations is

from the U.S. Census Bureau (http://www.census.gov/popest/national/national.html). Output and

consumption are from the Bureau of Economic Analysis. Output is gross domestic product (NIPA

Table 1.1.5) divided by the consumption price index (St Louis Fed, CPIAUCNS). Consumption is

consumption of non-durables plus services, deflated by the price index of non-durables and services

respectively (NIPA Tables 1.1.5, 2.3.4). To get hours worked, we merge series CEU0500000007 and

EEU00500005 from the BLS, times total private employment(BLS, CEU0500000001) divided by

population. The aggregate Tobin’s Q is computed using NIPA and FRB Flow of Funds Data as in

Laitner and Stolyarov (2003). Finally, the time series information on R&D expenditure spending in

the US is obtained from the NSF website.

Industry Data

The industry-level data is from the KLEMS dataset of Dale Jorgenson. We use industry value added

(constant prices) as measure of industry output.

Firm-level data

We define the investment rate as capital expenditures (Compustat: capx) divided by lagged gross

property, plant and equipment (ppegt); labor hiring as the percentage change in the number of

employees (emp); financial capital inflows as debt issuance plus equity issuance minus payout

(Compustat sstk + dltis - prstkc-dv-dltr) normalized by assets (at); return on assets as operating

income (ib) plus depreciation divided by lagged gross property, plant and equipment; Tobin’s Q

as the sum of the market value of common equity (CRSP December market capitalization), the

book value of debt (dltt), the book value of preferred stock (pstkrv), minus the book value of

inventories (invt) and deferred taxes (txdb), divided by gross property, plant and equipment (ppegt);

productivity of capital as sales (sale) plus change in inventories (invt) over gross property, plant

and equipment (ppegt); productivity of labor as sales (sale) plus change in inventories (invt) over

number of employees (emp).
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C Patent Data Construction – Details

In this section we explain in detail how we constructed our new patent data set. The raw data are

very large and not very well structured, and thus required a great deal of effort to clean. We used a

number of techniques to extract, clean, and match assignees from patents. As with any such project

there is a trade-off between type-I and type-II errors (in this case, failing to match an assignee to

CRSP or incorrectly matching an assignee to CRSP). Our approach was to be as conservative as

possible, attempting to minimize mismatches while at the same time extracting as many correct

matches as possible.

C.1 Data sources

We use three sources of data to construct the new patent database:

1. Details of patents granted from 1976–2010 is available in high-quality text files available for

bulk downloading from Google, through a special data-hosting arrangement with the United

States Patent and Trademark Office (USPTO). The text files use one of two data structures

that allows relatively straightforward data extraction: files for 2001–present use XML, while

files for 1976–2000 use a fixed-width data structure with labeled fields.

2. Patents granted prior to 1976 are also stored on Google, but only in individual web pages

(one per patent). Information during this period is drawn from Optical Character Recognition

(OCR) of original patent documents, and is of highly-variable quality. There is very limited, if

any, structure to these files.

3. We use the NBER patent data (Hall and Trajtenberg, 2001), which covers the period 1976–2006,

to help with the matching and to validate our other data extraction methods.

Due to varying data sources and quality over time, it worth stressing that from 1976–2010 we

use the official records of the USPTO. As we discuss below, we are able to provide some additions

and corrections to the NBER data during the period of overlap with our data. Prior to 1976 the

data are more difficult to work with, but we have implemented a number of sophisticated text

analysis algorithms to create a very high-quality database.

Downloading individual patent files

We downloaded individual patent data from Google. The URL for each patent’s summary page is of

the form http://www.google.com/patents/?id=RD0yAAAAEBAJ, where RD0y is a 4-character code

used by Google to identify each patent. The IDs use any of the characters {a, . . . , z, A, . . . , Z, 0,

. . . , 9, , -}. There are 644 = 16.8 million possible IDs, but only about 8 million patents. However,
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all 16.8 million URLs must be checked, because there is no publicly-available mapping of patent

numbers to the Google ID.

A screen shot of the summary page for the patent with id RD0y, which is patent 4,345,262, is

shown in Figure 1. The main page includes—when available—the title of the patent, the filing and

grant dates, the abstract, inventor(s), original assignee(s), current classifications, and a record of

citations (out-cites) and references (in-cites). The information reported on this page by Google was

gleaned from the OCR analysis of the original patent document, and consequently less information

is reported for older documents, especially patents granted before 1976.

Figure 1: Google summary page for U.S. patent 4,345,262

Using a Perl automation script, we sequentially navigated to each of the 16.8 million patent

summary pages.6 From this page, we stored all available information. The script then loaded the

“Read this patent” link, which loads a PDF version of the patent document. From here, we loaded

the “plain text” version of the document, which is simply the text derived from OCR of the PDF

document. Examples of these pages are shown in Figures 2 and 3. We saved the complete text

of the plain text version of each patent. After compression, the complete archive of text requires

6Google generally blocks users from downloading so many web pages. We are grateful to Hal Varian for his
assistance with arranging permission to access these pages.
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approximately 56 gigabytes of disk space.

Figure 2: PDF view

Figure 3: Plain text view

Download bulk patent files

As part of a special arrangement with the USPTO, Google also makes available for downloading bulk

patent data files. The bulk data does not have all of the additional “meta” information including

classification codes and citation information that Google includes in the individual patent files.
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Moreover, the quality of the text generated from OCR procedures implemented by Google is better

in the individual files than in the bulk files provided by the USPTO. We therefore do not use the

bulk download files for data in the pre-NBER period.

For the post-NBER period, however, the bulk data files are of extremely high quality because

they are based on digital patent records as opposed to OCR data drawn from images of patent

documents. These data files are provided either in XML format or in a fixed-width record format.

In both cases, all fields (inventor name, grant date, etc.) are clearly identified. We rely on these

files to construct the database during the post-NBER period (2006–2009) and to make additions

and corrections to the NBER data.

C.2 Identifying assignees

Extracting assignee names

For data during the post-1976 period, we can use the XML files available for bulk download to

identify the assignee with virtually no errors.

During the pre-1976 period, we cannot rely solely on Google’s extraction of the filing and grant

dates or the assignee name because the OCR for patents frequently has errors. As an example,

consider patent 1,131,249, shown in Figure 4.

Figure 4: Title page of patent 1,131,249

It is clear to a human reader that this patent was assigned to the Allis-Chalmers Manufacturing

Company, but the OCR for this patent reads

EASLS B. KNIGHT, OF NORWOOD, OHIO, ASSIGNOR,, BY MESH’S ASSIGN1IBNTS, TO ALUSCHALME&S

MANOTAC/rURING- COMPANY, A COBPOBAT’lOH OF DELAY/ABE.
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Consequently, Google records the assignee as “BY MESH S ASSIGNIIBNTS”, which is clearly not

accurate.

We therefore rely on a number of textual analysis algorithms to extract the assignee name from

the full text files we saved for each patent. In general, our approach to performing a “fuzzy” match

on a text string is to use the maximum likelihood n-gram approach described by Norvig (2009).

We begin by identifying the text where the assignee, if there is one, will be named. We do this

by searching for words that appear similar to “assign”, “assignor”, or “assignee”. When found near

the beginning of the patent document, this word is typically followed closely by the name of the

assignee, so we extract a text string of 200 characters for further processing. The assignee may be a

person, or a corporation, in which case the name will include a word like “company”, “corporation”

or “incorporated”. If the word “assign” and its variants are not found, we assume the inventor did

not assign the patent to another entity.

Cleaning assignee names

After extracting the string that is likely to contain the assignee name, additional cleaning is necessary.

Because of OCR errors, company names may be garbled. For example, the General Electric Company,

which has more than 43,000 patents in our data, appears as “General Electbic Oohpany”, “General

Electbic Cqhpany”, and “Genebal Electbic Compakt”, among hundreds of other misspellings. To

fix these, we first count how many patents have been granted to each assignee name, regardless of

how the assignee name is spelled. In this example, General Electric Company appears in 42,693

patents, while each of the misspelled variants appears fewer than 5 times.

We then calculate the Levenshtein edit distance7 between each assignee name and all other

names that have more patents. If any assignee name is close to another assignee name that is

associated with many more patents, then the more common assignee name is substituted for the

less common name. This algorithm correctly identifies all of the misspellings noted above as being

General Electric.

After cleaning assignee names, we manually checked which misspelled names were matched to

the 500 assignees with the most patents to confirm that no significant errors were introduced in this

step.

7The Levenshtein distance is the number of edits required to transform one string into another string, where
allowed edits are inserting, deleting, or substituting one character. For example, the Levenshtein distance between
“patent” and “parent” is 1, while the distance between “patent” and “apparent” is 3.
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Matching to CRSP

Having extract a list of assignee names, the next step is to match company names to the CRSP

permco identifier. This is accomplished in three steps.

We begin by looking only at those patents that are included in the NBER patent database.

For each assignee name identified in the steps above, we count how many different permcos are

matched to patents in the NBER database. For example, all of the patents with an assignee name

“General Electric Company” are matched to one permco in the NBER database. We can therefore

safely assume that all of the patents assigned to the General Electric Company can be matched to

that permco, even for patents not included in the NBER data. This step allows us to draw on the

extensive data cleaning and matching project undertaken by Hall and Trajtenberg (2001) while at

the same time identifying some errors in the NBER database. For example, patent 4,994,660 was

assigned to General Electric but is identified in the NBER data as being assigned to Hitachi, Ltd.

Because our algorithm relies on name matching, and the assignee name in that patent is General

Electric, the patent is correctly identified in our data.

The first step only helps us match assignees with patenting activity during the period covered by

the NBER database. We therefore proceed with a second step to match remaining assignee names.

We do this with a name matching algorithm based on code written by Jim Bessen, available at

http://goo.gl/m4AdZ. The algorithm uses a score based on the inverse word frequency to match

assignee names to possible company names. For example, the word “American” is quite common in

company names, and so contributes little to name matching; the word “Bausch” is quite uncommon,

so it is given much more weight. Visual inspection of the matched names confirms very few mistakes

in the matching.

Finally, we identify the top 250 assignees (by patents) with no CRSP matches. We manually

matched these to CRSP whenever possible. Examples of firms requiring manual matching include

research subsidiaries such as 3M Innovative Properties Company, which was not successfully matched

to CRSP because its name differs substantially from its parent. Although we only checked 250

assignees, this manual check allowed us to match an additional 64,000 patents. Firms with high

patenting activity but not matched to CRSP are either private companies or foreign firms that are

not listed on U.S. exchanges, an example of which is Hoffmann-La Roche, the large Swiss drug

company.
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C.3 Correcting grant dates

The filing and grant dates of the patents are subject to the same sort of OCR errors as the assignee

information. The grant dates are particularly important for our purposes because we use them to

calculate the return around the grant date. Since patent numbers are sequential by grant dates, it

is easy to infer missing or incorrect grant dates by comparing patent dates to the grant dates of

adjacent patents. The same is not true of filing dates, but do not use filing dates in our current

work.

To populate missing patent dates and correct mistakes we identify the 3 non-missing grant dates

immediately preceding and following each patent. For example, if patent k’s grant date is missing

but patents (k − 3,. . . ,k − 1,k + 1,. . . ,k + 3) have grant date D, then we set patent k’s grant date

to D. By applying this procedure iteratively we are able to correct most grant dates, with the

exception of patents whose grant dates are missing and lie at a boundary between two grant dates.

We fill in these missing boundary dates by manually checking their grant dates on the USPTO’s

web site.

While we don’t rely on filing dates in the paper, it is possible to correct large errors in filing

dates by identifying cases where filing dates occur after the grant date, or much earlier than the

filing dates of adjacent patents. These errors often occur only in the year, so we can keep the

recorded month and day the same while setting the year of the patent filing to the median filing

year of a 20-patent window centered on a patent with an apparent error.

C.4 Extracting citations

Extracting patent citations from the patent text documents presents another challenge. The format

of a patent document has changed several times, as has the location and formatting of citations

within the document. For example, Figure 5 shows the references section of patent 2,423,030, granted

in 1947. The format seen here is the first format used after patent citation began in February, 1947.

A human reader has no problem identifying the citations in this patent. But to understand the

considerable challenge faced in automating this identification, consider the OCR for this part of the

patent:

other side. 35 REFERENCES CITED

By this invention I am able satisfactorily and The following references are of record in the

conveniently to effect the drying of’Shaped pot- jjle of tllis patent:

tery or other ceramic articles either in their
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Figure 5: A patent citation section

moulds or otherwise, in a manner which min- UNITED STATES PATENTS

imises risk of injury by excessively rapid heating 40 Number Name Date

or moisture extraction. The invention is not, 1,767,872 Pox June 24, 1930

however, restricted to the example described as 1^934,904 Barnett et al Nov. 14’, 1933

subordinate details may be modified to suit dif- 2,257,180 Mayer Sept. 30, 1941

ferent requirements. 1,893,963 Russ Jan. 10,1933

Having thus described my invention what I 45

claim as new and desire to secure by Letters Pat- * ("uu-^ f A 1 Jun 11>

entis: Number Country Date

1. Means for drying ceramic ware, comprising 439,577 Great Britain Dec. 10,1935

Our approach is to identify any text that could be a patent number (a 6- or 7-digit number,

perhaps separated by commas, spaces, or other “noise” characters) and is closely followed by the

correct grant date for the cited patent. In particular, for every potential patent number we identify,

we determine its grant date and then search near the possible citation for that date. If the date

appears, we can be very confident that we have correctly identified a citation. For example, for the

patent shown in Figure 5 we extract the patent number 1,767,872 and then confirm that its grant

date—June 24, 1930—appears somewhere nearby in the text. By using this two-step process to

identify citations, our citation extraction is of very high quality—the probability that some random

7-digit number will be followed closely by the correct date is clearly extremely small.

Our citation extraction method provides more citations than what is available on the Google

summary page. For example, the Google summary page for the patent shown in the previous

example provides no citations at all, while our algorithm correctly extracted all four citations. (We

exclude citations to foreign patents, as these patents are not in our database.) In general, Google

does not currently report out-cites from patents granted before 1976, so we use this extraction

method on all patents granted between 1926 and 1975.
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C.5 Data validation

As previously mentioned, any data extraction project such as this can lead to two types of errors:

matching a patent to a firm that is not the assignee, or failing to match a patent to a any firm when

it does have an assignee. Our strategy makes the first error very unlikely, as a match occurs only

when a name closely resembling a CRSP company name appears around the word “assignee” at the

beginning of patent document. We cannot be sure how many errors of the second type we made,

but we have taken care to ensure that our algorithms allow as flexible matching as possible.

We also did two final checks to check the quality of our matching strategy. First, we visually

inspected a random sample of 500 patents granted between 1926 and 1975 and confirmed that

assignees had been correctly extracted, and correctly matched if the assignee appeared in CRSP.

This is obviously a very small sample of patents, but this careful check confirmed that no serious

errors existed.

Second, we applied the extraction and matching algorithms we used in the pre-1976 period to a

random sample of 25,000 patents granted between 1976 and 1999. We then compared our matches

to the matches in the NBER data. None of our matches was incorrect, and only 3 patents were

incorrectly not matched to an assignee. In other words, applying the techniques we used on pre-1976

data to data from the NBER period yields results that are virtually identical to those in the NBER

database.
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Table 1: Number of patents

Data step Number of patents

Total downloaded patents 7,797,506

Granted in 1926 or later 6,272,428

Identified as having an assignee 4,374,524

Matched to CRSP 1,928,123

Of which:

Present in NBER data 1,404,822

New to this paper 523,301

The table provides details on patents in our sample. We begin with all patents downloaded from Google Patents, and

restrict the sample to post-1926. Not all patents have assignees, and among those that do, not all are companies in

CRSP. We are able to match 1,928,123 patents to CRSP firms, of which 523,301 (27%) are new to this study. Further

details are reported in Table 2 and Figure 1.
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Table 3: Stock turnover around patent announcement days

Event l = −1 l = 0 l = 1 l = 2 l = 3 l = 4

A. Patent grant -0.396 0.046 0.082 0.074 0.006 -0.377

(-8.93) (2.55) (5.23) (4.51) (0.23) (-9.12)

B. Patent publication 0.094 0.182 0.283 -0.136 0.015 0.147

(1.65) (3.72) (4.33) (-2.04) (0.27) (2.92)

Table shows the output of the regression of stock return turnover (xt+l = volt/shroutt) on a dummy variable taking

the value 1 if a patent was granted to the firm on day t (Panel A), or the USPTO publicized the grant application of

the firm on day t (Panel B). We include firm-year and day-of-week fixed effects. We cluster standard errors by year

and report t-statistics in parenthesis. We restrict the sample to firms that have been granted at least one patent.
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Table 4: Which firms innovate?

A+ Â

Af (1) (2) (3) (4) (5) (6) (7) (8)

lnKt−1 0.099 0.106 0.116 0.066 0.062 0.067 0.076 0.035

(42.86) (43.71) (46.79) (39.40) (39.55) (40.40) (43.12) (34.17)

lnQt−1 0.052 0.042 0.029 0.035 0.028 0.020

(19.80) (15.04) (17.79) (19.82) (14.96) (20.11)

lnRDt−1 0.103 0.057 0.068 0.030

(28.53) (25.24) (28.38) (23.07)

Af,t−1 0.665 0.742

(68.24) (88.33)

Observations 141695 141695 65234 65058 141695 141695 65234 65058

pseudo R2 0.476 0.490 0.469 0.653 0.644 0.671 0.739 1.242

Table shows Tobit regressions of firm-level innovation Aft on firm characteristics: log firm size (Kft, gross PPE), log

Tobin’s Q and log R&D expenditures to book assets lnRD. All specifications include year (T) and industry (I) fixed

effects. Standard errors are clustered by firm.
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Figure 1: Number of Patents with Matched Assignees

Figure shows the number of patents matched to CRSP firms by year of patent grant. Light shading denotes patents

included in the NBER patent data set, while dark shading denotes patents that are new in our paper.
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Figure 2: Firm innovation measures – Tail distribution
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(a) Firm innovation measure A+
f , truncated (b) Firm innovation measure Âf , adjusted for measurement error

Figure plots the log complementary empirical cdf, log(1 − F (A)), versus the log value of the firm-level innovation

measure, logA, for the top 10 percent of the distribution.
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Figure 3: Impulse responses: Productivity, controlling for level of stock prices
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Figure shows impulse response of total factor productivity productivity (TFP) from a VAR including

[log TFP, logM, log v, logA+] (left) and [log TFP, logM, log Â] (right). Panels a and c present results using our

measure of innovation A based on simple truncation A+. Panels b and d present results using our measure of

innovation Â that accounts for measurement error. Top panel shows impulse response of productivity to our innovation

measures. Bottom panel shows response to per-capita real stock market level. We include a deterministic trend in all

specifications. We select lag length based on the AIC criterion. In panels a and c we include the log cross-sectional

average of idiosyncratic volatility v. Dotted lines represent 90% confidence intervals using standard errors are computed

using 500 bootstrap simulations.
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Figure 4: Impulse responses, Output, controlling for level of stock prices
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Figure shows impulse response of per capita real output Y from a VAR including [log Y, logM, log v, logA+] (left)

and [log Y, logM, log Â] (right). Panels a and c present results using our measure of innovation A based on simple

truncation A+. Panels b and d present results using our measure of innovation Â that accounts for measurement

error. Top panel shows impulse response of productivity to our innovation measures. Bottom panel shows response to

per-capita real stock market level. We include a deterministic trend in all specifications. We select lag length based

on the AIC criterion. In panels a and c we include the log cross-sectional average of idiosyncratic volatility v. Dotted

lines represent 90% confidence intervals using standard errors are computed using 500 bootstrap simulations.
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Figure 5: Impulse responses using Number of Patents and R&D Stock
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Left panel shows impulse response of log productivity, output and consumption from a bi-variate VAR [logXt, logNt]

with a deterministic trend. Right panel shows impulse response of log productivity, output and consumption from a

bi-variate VAR [logXt, logRDt] with a deterministic trend. Dotted lines represent 90% confidence intervals.
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