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Dividend Strips and the Term Structure of Equity Risk Premia:

A Case Study of Limits to Arbitrage

Abstract

Dividend strips, which are claims to dividends paid over future time intervals, shed
light on the pricing of risks at different horizons and can help to link asset mar-
kets with the real economy. We show, however, that small primary-market pricing
frictions become greatly magnified when using standard no-arbitrage assumptions
to construct and value synthetic dividend claims. Amplification occurs because
of the high implicit leverage of the long-short positions required to replicate div-
idend strips, and generates remarkably large biases in the moments of synthetic
returns. In a calibrated structural model with tiny pricing frictions, we reproduce
qualitatively and quantitatively the strongly downward-sloping term structure of
equity risk premia, excess volatility, return predictability, and a market beta sub-
stantially below one, consistent with empirical evidence. Using more robust return
measures we find little support for a statistical or economic difference between the
returns to short- versus long-term dividend claims. Our theoretical and empirical
analysis shows that no-arbitrage assumptions are not innocuous, particularly for
agents wishing to use highly-levered, multi-leg positions to replicate and trade on
the relative prices of otherwise illiquid over-the-counter claims.



I. Introduction

Following Mehra and Prescott (1985), numerous authors have attempted to explain the

apparently high average returns on equity relative to historical aggregate consumption

risk. Two explanations that have received considerable attention are the habit forma-

tion model of Campbell and Cochrane (1999) and the long-run risks model of Bansal

and Yaron (2004). Both imply under standard calibrations that the long-horizon cash

flows of equity are riskier and receive higher returns than short-horizon equity cash

flows. In other words, these models generate term structures of equity risk premia that

are upward-sloping.1 Authors such as Lettau and Wachter (2007) point out the impor-

tance of the term structure of equity risk premia for evaluating these explanations, and

note tensions with other empirical regularities such as the value premium.2

Binsbergen, Brandt, and Koijen (“BBK”, 2011) propose to measure the term struc-

ture of equity risk premia by calculating the returns on dividend strips, which are claims

to dividends paid over future time intervals. Using dividend strips one can infer the

term structure of equity risk premia; however, dividend strips and dividend swaps are

traded in relatively illiquid over-the-counter markets where data are not readily avail-

able. The central insight of BBK is that in principle dividend strips can be synthetically

replicated by long-short positions in futures and spot markets, relying on futures-spot

parity, or by appropriate positions in puts and calls, additionally requiring that put-

call parity holds. Using this approach BBK calculate the returns on dividend strips

and find higher returns on short-term versus long-term dividend claims. Their evidence

contradicts currently prevailing models of the equity premium, which has important im-

plications for theoretical research attempting to understand the link between financial

markets and the real economy.3

1Rare disaster models (Gabaix, 2008, Barro, 2006, Rietz, 1988) imply a flat term structure of equity risk
premia. See Binsbergen, Brandt, and Koijen (2011) for a full discussion of the implications of leading asset
pricing models for the term structure of equity risk premia, including prior literature and calibrations.

2Chen (2011) offers a reconciliation of an upward-sloping equity premium with the value premium by
providing alternative measures of cash flow growth. Using these measures, value stocks have longer duration
than growth stocks.

3Croce, Lettau, and Ludvigson (2011) develop a consumption-based model with a downward-sloping equity
premium under imperfect information. Wang (2011) shows that imperfect information can help to match a
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We show that using synthetic dividend strips to infer the term structure of equity

risk premia can be misleading because of the impact of small pricing frictions. Our

claim may seem surprising. BBK emphasize that dividend strips can be replicated

using highly liquid futures contracts, and their careful empirical methods and discussion

are directly aimed at alleviating concerns about microstructure frictions. The central

insight we offer is that, even when pricing frictions have tiny impacts on any leg of a

compound trade involving long and short positions, their cumulative effect relative to

the value of the net position can be hundreds of times larger. The dramatic amplification

of primary-market pricing frictions in a long-short trade occurs because of the effects

of implicit leverage.

For example, suppose one buys an index claim and takes a short position in an

offsetting one-year futures contract. The net claim is a synthetic dividend strip that

entitles one to all dividends paid on the index over the next year. Importantly, due to

leverage the net value of the dividend strip is only a small fraction of the gross value

of either the long or the short side of the trade. To see this quantitatively, assume

an annualized price-dividend ratio of 50, roughly consistent with recent experience.4

Normalizing the long value to $100, the offsetting futures position would have a notional

amount in the neighborhood of $98, and the strip value would be about $2. Now

consider that microstructure frictions have tiny impacts of a few basis points (cents)

on either the long side or the short side of the trade, or on the synchronicity of the

two prices, which is required for parity relations to hold. A few cents of mispricing

may be irrelevant compared to the $100 gross value of the long side, but substantial in

comparison with the $2 net value of the dividend strip. Since measurement errors can

impact both the long and short side of the trade, the importance of pricing frictions

can easily be one hundred times larger in the dividend strip return than in any leg of

the trade in isolation.

downward-sloping equity premium as well as other real and financial market moments in a production economy.
4During the 1996-2009 sample period considered by BBK, the U.S. annualized price-dividend ratio av-

eraged approximately 60, ranging from a low of 28 to a high of 90, where the monthly stock mar-
ket price-dividend ratio is calculated following the method of Shiller (2005) with data downloaded from
http://www.econ.yale.edu/ shiller/data.htm.
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A symptom of these pricing frictions is the enormous and negative first-order auto-

correlation, about -30% at a monthly frequency, of the synthetic dividend returns re-

ported by BBK. Our theoretical analysis shows that two distinct channels can explain

these extreme reversals. First, negative autocorrelations are known to be consistent

with bid-ask bounce or measurement error (Niederhoffer and Osborne, 1966, Blume

and Stambaugh, 1983), and as we show the high implicit leverage of dividend strips

dramatically inflates any small measurement errors from the primary markets.

A second and perhaps even more novel result is that asynchronous price adjustment

can also contribute substantially to negative autocorrelation in synthetic dividend strip

returns. This result is surprising since asynchronous price adjustment is universally

associated with positive autocorrelation in portfolio returns (e.g., Lo and MacKinlay

(1990)). However, prior literature on asynchronous price adjustment focuses on the

effects of asynchronicity in diversified portfolios with positive portfolio weights. For

the long-short portfolios we consider the effects are entirely different. In a long-short

trade if the long side adjusts to a news or liquidity shock before the short side, the first

measured return will miss the hedging effect of the short side, and reversal tends to

occur in the next period as the short side catches up. The same reversal logic applies if

the short side reacts to information before the long side. This argument thus does not

require one side of the trade to always be more informationally efficient than the other.

Large negative autocorrelations are generated simply by having the long and the short

side react to a shock at not precisely the same time.

Building on Blume and Stambaugh (1983), the negative autocorrelation induced

in portfolio returns by microstructure frictions also creates an upward bias in average

one-month simple returns. Using a formula provided in Boguth, Carlson, Fisher, and

Simutin (“BCFS”, 2011), based on the effects of Jensen’s inequality, we show that the

extreme negative autocorrelation of measured dividend strip returns implies a large

average return bias that explains much of the difference between mean short- and long-

term asset returns.
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Using a theoretical analysis based on log-linearized returns and a calibrated struc-

tural model, we show that the principal empirical findings regarding dividend strips

can be meaningfully influenced by tiny pricing frictions in primary markets. In a model

where the true term structure of equity risk premia is flat, we generate in synthetic divi-

dend strips a strongly downward-sloping term structure, excess volatility, large negative

return autocorrelations, return predictability from the price-dividend ratio, and a mar-

ket model beta substantially less than one. The calibrated model not only qualitatively

fits, but also quantitatively matches the key moments.

We further show that alternative measures of returns that are not as sensitive to

pricing frictions lead to very different conclusions about the difference between short-

and long-term asset returns. Following from BCFS, building on Lo and MacKinlay

(1990), while average simple returns can be highly sensitive to microstructure bias

at short horizons, average returns over longer horizons are less biased and average

logarithmic returns are insensitive to standard microstructure frictions. We find that

the apparent higher returns of dividend strips are substantially diminished in annual

rather than monthly return intervals, and in average logarithmic returns. We conclude

that accounting for the impact of microstructions is important when making inferences

regarding the term structure of equity risk premia using synthetic dividend strips.

Our findings provide a stark example of the effects of limits to arbitrage. In con-

structing dividend strip prices using the standard replicating portfolio approach, one

relies on two of the most fundamental no-arbitrage relations in finance, futures-spot

and put-call parity. We show that small errors in these relations generate remarkably

large effects in the mean, volatility, and predictability of synthetic dividend strip re-

turns. The magnification of seemingly small costs of trading in highly liquid futures

and index options markets is an important consideration for agents who may wish to

trade on the the relative prices of short- and long-maturity equity risks. By showing

the large potential price impacts of small frictions in primary markets, our work adds

to the growing literature, following Shleifer and Vishny (1997), on the importance of
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the limits of arbitrage.

Section II discusses dividend strips and provides a back-of-the-envelope calculation

of the bias in average returns due to microstructure effects, following from BCFS. Sec-

tion III studies microstructure bias in levered portfolios. Section IV gives our calibrated

model. Section V provides additional empirical results. Section VI concludes.

II. Dividend Strip Returns

A dividend strip entitles the holder to all dividends paid between dates t+T1 and t+T2,

where t denotes the current date. The value of a dividend strip at date t is given by

Pt,T1,T2 ≡
T2∑

τ=T1+1

Et

(
Mt+τ

Mt

Dt+τ

)
, (1)

where Mt and Dt respectively denote the stochastic discount factor and dividend pay-

ments at date t. In the special case where T1 = 0, the dividend strip is identical to

the “short-term asset” described by BBK, which entitles the holder to dividends paid

between the current date t and a future date t+T2 = t+T . Under absence of arbitrage

the value of the short-term asset is given by the cost of carry formula for equity futures:

Pt,T ≡ Pt,0,T = St − e−rt,TTFt,T , (2)

where St denotes the spot value of the equity claim, Ft,T is the forward price, and rt,T

is the risk-free rate of interest for a bond maturing at date t + T . In the general case

where T1 ≥ 0 the price of a dividend strip is given by:

Pt,T1,T2 = Pt,T2 − Pt,T1 = e−rt,T1T1Ft,T1 − e−rt,T2T2Ft,T2 . (3)

In their primary analysis, BBK use put-call parity to rewrite (2) and (3), substituting

portfolios of puts, calls, and bonds for futures prices:

Pt,T = St + pt,T − ct,T −Xe−rt,TT , (4)

Pt,T1,T2 = pt,T2 − pt,T1 − ct,T2 + ct,T1 −X(e−rt,T2T2 − e−rt,T1T1), (5)

where pt,T and ct,T are respectively puts and calls maturing at t+T with common strike

X. BBK use (4) and (5) to calculate prices of dividend strips at the end of each month,
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using puts and calls on the S&P 500 index, the S&P 500 index value itself, and bond

prices.5 They take great care to attempt to ensure the synchronicity of the various price

quotes used to form the synthetic strip prices, and consider two specific return series.

The first dividend strip return equals the return on a short-term asset:

R1,t =
Pt,T +Dt

Pt−1,T+1

, (6)

where the maturity T varies, depending on the derivatives traded, between approxi-

mately 1.3 and 1.9 years for each month of implementation.6 The second dividend strip

return is

R2,t =
Pt,T1,T2

Pt−1,T1+1,T2+1

, (7)

where T2 is set identically equal to the maturity T used in the first strategy, and

T1 ≈ T2 − 12 is chosen to match the available contract with maturity approximately

one year earlier. The second strategy does not require replicating the index or collecting

dividends, and involves trades only in highly liquid futures contracts.

A. Properties of the Return Series

BBK report that over a February 1996 to October 2009 sample period, the return series

R1,t and R2,t are highly correlated. They provide the following key facts:

• The one-month average returns of both short-term dividend strips are substan-

tially larger than the one-month average returns on the S&P 500 (annualized

11.6% and 11.2% versus 5.6%). The return differences persist after controlling for

standard risk factors.

• The volatilities of the short-term dividend strips are substantially higher than

the S&P 500 index (standard deviations of monthly returns are 7.8% and 9.7%

5As a robustness check, BBK also calculate strip prices using futures and compare with the prices based on
puts and calls. We comment on the validity of this robustness check later in our paper.

6Specifically, in January of any given year, the maturity T is chosen according to the available contract
expiring in the fall of the following year. This contract will have a maturity of about T = 1.85 at purchase.
This contract is held for six months, during which period T decreases by 1/12 each month. On July 1, this
contract is sold and a new contract with maturity of approximately T = 1.85 years is purchased.
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versus 4.7%). The volatilities of the dividend strips are substantially larger than

the volatilities of subsequent dividend realizations, which is diagnosed as excess

volatility.

• The dividend strip returns have estimated betas of about 0.5 in market model

regressions.

• The returns series R1,t is highly predictable by lagged values of the price-dividend

ratio of a 1.5 year short-term dividend strip.

An important indicator of measurement error in the BBK results is extreme negative

autocorrelation, about -0.30, in each of the two return series. Clearly, the return series

R1,t and R2,t are not tradeable at the assumed prices. If they were, an average return

of 30% per month per dollar invested would be available by following a return reversion

investment strategy. Hence, some degree of measurement error must be present in the

dividend strip return series.

B. Measurement Error and Bias in Average Returns

The effect of measurement error on inferences about expected returns and performance

is a fundamental topic in the finance literature. Early literature such as Blume and

Stambaugh (1983) focuses on the effects of microstructure frictions on daily rebal-

anced portfolios, including equal-weighted strategies. This research concludes that

measurement error induces negative autocorrelation in returns and inflates measured

daily returns. Roll (1983) investigates the effects of daily rebalancing over multiple

periods. Recently, Asparouhova, Bessembinder, and Kalcheva (2011) show that even

lower-frequency monthly rebalancing can result in strong biases in returns, especially

for portfolios of illiquid stocks whose average returns can be overstated by more than

0.4% monthly.

The effects of microstructure bias on the measured returns of buy-and-hold portfo-

lios, such as an investment in the value-weighted S&P index, has historically focused on

autocorrelations and volatilities (Niederhoffer and Osborne, 1966, Scholes and Williams,
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1977). For example, it is well-known that the S&P index has a significantly positive

first order autocorrelation at a one-month horizon. This positive autocorrelation in the

index return is generally understood to be largely driven by asynchronous adjustment

in the index component prices, and not an indication of true trading profits from a

short-term persistence strategy, as shown for example in Boudoukh, Richardson, and

Whitelaw (1994), Ahn, Boudoukh, Richardson, and Whitelaw (2002).

Despite the significant impacts of microstructure frictions on the second moments

of returns, the classical literature has largely perceived microstructure frictions to be

unproblematic for calculations of average returns in the absence of periodic rebalancing.

This is likely due to the seminal work of Scholes and Williams (1977) and Lo and

MacKinlay (1990), who show, among other contributions, that standard microstructure

frictions do not alter mean returns. However, both of these prior studies consider only

logarithmic returns.

In recent work, BCFS show that microstructure frictions impact not only the au-

tocorrelations and volatilities of buy-and-hold portfolios, as shown in prior literature,

but also their average simple returns and alphas. For example, under positive auto-

correlations high observed short-horizon returns tend to follow one another, raising

the benefit of compounding and increasing the long-horizon return. To compensate,

the average short-horizon return must be downward biased. BCFS show that average

monthly returns of long-only buy-and-hold stock portfolios can be impacted by as much

as 0.25% per month relative to longer-horizon averages. Most empirical studies that

compare returns of different investment strategies, including BBK, focus on average

simple monthly returns.

C. Approximating the Impact on Dividend Strip Average Returns

We use a formula provided in BCFS to estimate the return a buy-and-hold investor

can expect to obtain from following a strategy of trading in the short-term asset. Let

rit = ln (Rit) ∼ N (µi, σ
2
i ) denote a series of monthly log returns. We further assume

that log returns aggregated over n months have a normal distribution with variance
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σ2
in, where n is the relevant horizon. These assumptions are exactly satisfied if rit is

a stationary ARMA(p, q) process with Gaussian innovations, and approximately hold

in more general cases. The buy-and-hold mean is R̄BH
in ≡ E [Ri,t+1 · · ·Ri,t+n] and we

consider the corresponding rescaled monthly measure defined by R̄RS
in ≡ E [Rit]

n. BCFS

show that the relative difference between the two return measures satisfies

R̄RS
in

R̄BH
in

= enσ
2
i (1−V Rin)/2, (8)

where V Rin ≡ σ2
in/ (nσ2

i ) is the variance ratio.

The bias in rescaled monthly returns relative to the buy-and-hold return is thus

determined by the monthly variance σ2
i and return autocorrelations as summarized by

the variance ratio V Rin. When the variance ratio is one, for example if returns are

iid, rescaled monthly returns are an unbiased estimate of the investment return of the

buy-and-hold investor. For assets with positive return autocorrelations, variance ratios

typically exceed one and equation (8) suggests that their buy-and-hold return exceeds

the compounded short horizon return. A negative autocorrelation implies high short-

relative to long-horizon returns. All else constant, the bias is more severe when σ2
i is

high. Although the formula (8) is based on the assumption of lognormal distributions,

BCFS show that it is empirically extremely accurate for a wide range of portfolios.

Table 1 shows our calculation of the ratio (8) for dividend strip returns and the

S&P500, using moments reported by BBK. Panel A lists the primary moments used

in the formula. Both of the dividend strip return series R1,t and R2,t exhibit large

volatilities and very strong negative autocorrelations. These moments suggest that

average one-month returns rescaled to an annual horizon will be substantially upward

biased relative to the actual twelve-month average return. In comparison, the S&P500

return series shows moderate positive autocorrelation, lower average returns, and lower

volatility.

Panel B presents the average one-month returns for each series rescaled to an annual

horizon, the estimated twelve-month buy-and-hold return average, and an estimate of
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the variance ratio for each investment.7 For the S&P index, the average monthly return

rescaled to an annual horizon is 6.93%. The variance ratio of 1.16 exceeds one due to

positive autocorrelation in the return series, and the estimated annual buy-and-hold

return of 7.16% slightly exceeds the rescaled monthly return. By contrast, the average

monthly returns of the dividend strip series when rescaled to an annual horizon appear

to suggest an annual return exceeding 14%. However, with variance ratios far below one,

0.51 and 0.33 for R1 and R2 respectively, the estimated annual buy-and-hold returns

of 12.8% and 10.1% are substantially lower than the average monthly returns would

suggest. The bias in the short-horizon monthly returns is inferred to be about 2%

annually for R1 and 4.2% annually for R2.

These first calculations show that the extreme negative autocorrelations of dividend

strip returns and apparent bias in short-horizon monthly returns relative to longer-

horizon annual returns are related symptoms. The root causes of these symptoms can

be traced to small pricing frictions, as we now show.

III. Microstructure Bias in Levered Portfolios

It is not obvious that microstructure frictions should have a large impact on the average

monthly returns of synthetic dividend strips. After all, as noted by BBK the synthetic

dividend strips can be created by investments in highly liquid derivatives of the S&P

index. The impact of microstructure frictions on any one of these contracts should

be small. The key idea of our paper, which we now develop more formally, is that

the high leverage implicit in the synthetic dividend strip strategy magnifies negligible

microstructure frictions in any leg of the strategy.

We assume that the observed index level Sot is equal to the sum of the true unob-

7Since no variance ratios are reported in BBK, we use the 1-lag autocorrelation to approximate the variance
ratio using

V R(q) = 1 + 2

q−1∑
k=1

(1 − k/q) ρk, (9)

as in Campbell, Lo, and MacKinlay (1997, Eq. 2.4.19). For the higher order autocorrelations, we assume
ρk = 0 for k ≥ 2. We can alternatively impose the restrictions implied by an AR process, specifying ρk = ρk1
for k ≥ 2. The estimated horizon effects are affected little by this assumption.
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servable index level St and two error terms:

Sot = St + ρ(St−1 − St) + St(e
ηt − 1). (10)

The term ρ(St−1 − St), 0 ≤ ρ ≤ 1, accounts for lead-lag effects among the index

constituents. The term St(e
ηt − 1) captures iid measurement error. The futures price

is for now taken to be unaffected by microstructure frictions (i.e., F o
t,T = Ft,T ), and we

weaken this assumption in the next section. If one uses the futures-spot parity relation

(2) to impute the short-term asset value, the observed price is

Pot,T ≡ Sot − e−rt,TTF o
t,T (11)

= Pt,T + (Sot − St). (12)

This equation shows that the effect of microstructure friction on the short-term asset

is identical in absolute terms to the effect on the index. The effect is proportionally

larger in the short-term asset, however, since Pt,T is considerably smaller than St.

Using a procedure similar to Campbell and Shiller (1988), we now provide log-linear

approximations for the observed prices of the index and short-term asset. Let lower

case letters denote the logarithm of their uppercase counterpart, and define the capital

gain return Rx
t = St/St−1. This allows us to equivalently express the observed index

level in equation (10) as a proportion of its true value,

Sot = St

[
ρ

(
1

Rx
t

− 1

)
+ eηt

]
. (13)

Let `t,T ≡ ln(St/Pt,T ) be the logarithm of the implicit leverage of the dividend strip.

Also define ¯̀
T = E(`t,T ) and L̄T = exp(¯̀

T ). In the special case where `t,T is a constant,

L̄T is the implicit leverage of the dividend strip with maturity T . We then show

Proposition 1 Logarithmic index levels and short-term asset prices are:

sot ≈ st − ρrxt + ηt, (14)

pot,T ≈ st − `t,T + L̄T (−ρrxt + ηt). (15)
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Microstructure frictions have larger effects on the log price of the short-term asset, and

the amplification is summarized by L̄T , reflecting leverage. For dividend strips with

a one-year maturity, L̄−1
T ≈ 0.02 approximates the dividend yield of the index, and

L̄T ≈ 50 approximates the price-dividend ratio of the index. Pricing frictions that are

small relative to the observed index level (14) can therefore be dramatically magnified

in the measured dividend strip price (15).

Equations (14) and (15) also show that when the dividend strip leverage `t,T is

stationary in t holding T constant, the observed log prices sot and pot,T are cointegrated,

sharing the common stochastic trend st. This feature is a natural consequence of

the short-term nature of the pricing frictions we assume. Over long time periods, we

therefore expect the prices of the index and the dividend strip to grow at approximately

the same rate. Since long-run growth rates are determined by geometric mean returns,

the geometric means of the capital gains returns of both series should be similar.8 The

analysis therefore suggests that if over long periods of time total-return indices of the

index and the dividend strip are to differ, it must be through the dividend yield – as

opposed to the capital gain – component of returns. That is, if the term structure of

equity risk premia is not flat, it must be reflected over the long run in different averages

of the log dividend yields of the stock market index and the dividend strip.

The closed-form expressions for prices in Proposition 1 allow direct analysis of the

impact on returns. Let ∆t = ln(Dt/St), ∆ = E(∆t), δt = ln(Dt/Pt,T ), and δ = E(δt).

We then show

Proposition 2 Observed logarithmic returns on the index and the short-term asset are

respectively

rot ≡
Sot +Dt

Sot−1

≈ rt + ρ(rxt−1 − rxt ) + ηt − ηt−1, (16)

ro1t ≡
Pot,T +Dt

Pot−1,T+1

≈ r1t + L̄T [ρ(rxt−1 − rxt ) + ηt − ηt−1] (17)

8Average log capital gains returns should also be similar since the average log return is a simple transform
of the geometric mean return.
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where

rt ≡
St +Dt

St−1

≈ ln(1 + e∆) +
e∆

1 + e∆
(∆t −∆) + st − st−1, (18)

r1t ≡
Pt,T +Dt

Pt−1,T+1

≈ ln(1 + eδ) +
eδ

1 + eδ
(δt − δ) + pt,T − pt−1,T+1. (19)

Equations (16) and (17) show that the observed log index return has the same mean

as the true log index return, and the observed dividend strip log return has the same

mean as the true dividend strip log return. Consistent with prior literature, neither

form of microstructure friction introduces bias into the observed log returns. However,

any small microstructure frictions do become greatly magnified in the logarithm of the

short-term asset return. The size of the amplification effect is driven by the implicit

leverage L̄T of the synthetic dividend strip.

Despite the fact that mean log returns are not biased by microstructure frictions,

average simple returns can be greatly affected. Following from the standard Jensen’s

inequality approximation:

E(Rit) ≈ eE(rit)+0.5Var(rit), (20)

any microstructure-induced bias in volatity should impact simple returns. In recent

work, BCFS show that (20) is empirically extremely accurate for a broad set of style

portfolios, in the sense that for a range of measurement horizons, the scaling of simple

returns is largely explained by the behavior of measured volatilities. We therefore

anticipate bias in average simple returns to be driven by the magnitude of any volatility

bias created by microstructure frictions.

We now show that the impact of microstructure frictions on the measured variance

of the dividend strip can be large. For tractability, consider the case where dividend

yields on the index and dividend strip are constants, and the true index return rt is iid.

The variance of the short-term asset return is then

Var(ro1t) = Var(rt)

[
1− 2ρL̄T + 2ρ2L̄2

T + 2L̄2
T

Var(ηt)

Var(rt)

]
. (21)

Lead-lag effects inflate variance if ρ > L̄−1
T , and measurement error unambiguously

increases volatility. Both effects are multiplied by factors on the order of 2L̄2
T . If we
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again consider L̄T = 50, implicit leverage magnifies microstructure-induced variance

by 5000 times! Even small primary-market pricing frictions cause apparent excess

volatility, which biases the average simple return following (20).

Consistent with standard implications of excess volatility (Shiller, 1981), the ob-

served short-term asset return is predictable with first-order autocovariance

Cov(ro1t, r
o
1t−1) = Var(rt)

[
ρL̄T − ρ2L̄2

T − L̄2
T

Var(ηt)

Var(rt)

]
. (22)

Lead-lag effects can cause positive or negative autocovariance depending on whether

L̄−1
t − ρ is positive or negative, while measurement error unambiguously biases the

measured autocovariance downwards. Leverage again inflates the importance of both

frictions by factors on the order of L̄2
T .

The microstructure frictions also impact measured beta. The covariance of the

short-term asset return with the index return is

Cov(rot , r
o
1t) = Var(rt)

[
1− ρ(1 + L̄T ) + 2ρ2L̄T + 2L̄T

Var(ηt)

Var(rt)

]
. (23)

Lead-lag effects reduce the measured covariance when 1 + L̄−1 > 2ρ > 0. Monthly

S&P 500 returns are positively autocorrelated with ρ ≈ 0.1 < (1 + L̄−1
T )/2, and should

therefore contribute to downward bias in covariance. The last term in (23) shows that

measurement error increases covariance. The magnitude depends on the variance of

the measurement error relative to the variance of index return, again magnified by the

implicit leverage L̄T of the short-term asset. The observed beta

βo1t ≡ Cov(rot , r
o
1t)/Var(rot ) (24)

is determined by dividing (23) by the measured index variance

Var(rot ) = Var(rt)

[
1− 2ρ+ 2ρ2 + 2

Var(ηt)

Var(rt)

]
. (25)

Since leverage does not affect the index variance, the absolute bias in (25) is expected to

be tiny relative to the absolute bias in the covariance (23). The effect of microstructure

frictions on the observed dividend strip beta (24) should therefore be dominated by

bias in the covariance (23).
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Table 2 uses the equations derived in this section to illustrate the impact of implicit

leverage and microstructure frictions on various moments of the short-term asset return.

The selection of parameters is consistent with the ratio P/S varying from 1/10 to

1/90. Variation in this parameter can either reflect different assumptions for the annual

dividend yield on the S&P 500 index or consideration of a variety of dividend strip

strategies with T − t ranging from a few months to over a year. Lead-lag effects in

the index are captured by ρ, roughly equal to the first-order autocorrelation of index

returns. Finally, the parameter σ(η) reflects the magnitude of measurement errors.

The table shows effects of microstructure frictions on the monthly mean return,

standard deviation, autocorrelations, and market beta. Measurement error biases mea-

sured volatility upwards, in extreme cases more than tripling the unobserved true level

of 4%. Average simple returns are also overstated, in some cases more than doubling

their true value. Even modest measurement error creates substantial negative auto-

correlation. Observed market betas are only modestly inflated. Asynchronous price

adjustment also has large impacts. At leverage levels of L̄T equal to 30 or higher, even

small values of ρ can significantly increase measured standard deviations and average

simple returns. Negative autocorrelations are easily produced by high leverage. At

low leverage (L̄T = 10), the bias in standard deviations and simple return averages is

negative, and return autocorrelations are positive. Significant downward bias in beta

occurs for all tabulated levels of L̄T and ρ. The table shows that by combining the

effects of measurement error and asynchronous price adjustment, all of the key facts

associated with dividend strips can be produced.

IV. A Structural Model, Calibration, and Implications

We now show that in a simple calibrated model, tiny microstructure effects capture

qualitatively and quantitatively the primary empirical features of dividend strips. Let

dividends Xt be given by

dXt = gXt + σXtdWt, (26)
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where dWt is the increment of a Wiener process, g is the mean growth rate, and σ2 the

variance. The fair price of the equity claim is given by the Gordon growth formula:

St =
Xt

µ− g
, (27)

where µ is the constant return on equity.

A. Delayed Price Adjustment in the Index

We first consider the case where only the observed level of the index at time t, denoted

Sot , depends on lagged prices:

Sot = (1− ρ1 − ρ2)St + ρ1St−1 + ρ2St−2. (28)

True and measured returns are given by:

RMt = St/St−1 − 1, (29)

Ro
Mt = Sot /S

o
t−1 − 1. (30)

The true value of a short-term asset with a claim on the first T years of dividends

starting from date t is given by:

Pt,T = St(1− e−(µ−g)T ). (31)

We initially assume that the observed futures price is based on the fair value of the

index:

F o
t,T = Ft,T = (St − Pt,T ) erT . (32)

The observed price of the short-term asset, based on futures prices and the observed

index value, is then

Pot,T = Pt,T + ρ1(St−1 − St) + ρ2(St−2 − St). (33)

In the special case where ρ2 = 0, the measured return on the short-term asset is

Pot+1,T−1

Pot,T
=
Pt+1,T−1 − ρ1(St+1 − St)
Pt,T − ρ1(St − St−1)

. (34)
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As in the lognormal approximation of Section 3, the presence of asynchronous trading

drives negative autocorrelation in the returns of the short-term asset. This is opposite

to the effect of asynchronous trading in long-only portfolios, which causes positive

autocorrelations (e.g., Lo and MacKinlay, 1990). Additionally, the bias caused by

slow price adjustment negatively correlates with the true price change, and positively

correlates with the lagged true price change. These effects will cause a downward bias

in the estimated market beta.

Table 3, Panel A, shows the magnitudes of these effects. To calibrate the model, we

set rf = 0.0029 per month and µ = 0.0056 equal to the sample averages of the monthly

risk-free rate and market return reported by BBK in their sample. We consider two

values for the growth rate g of dividends. First, in column (i) we set g = 0.042, which

is high from a historical perspective but necessary to approximately match the price-

dividend ratio of about 60 over this sample period. Alternative calibrations that use a

lower dividend growth rate as well as a lower risk-free rate or market risk premium to

approximately match the observed price-dividend ratio produce results similar to those

reported in this calibration. Second, in column (ii) we choose a more conservative value

g = 0.025 for the growth rate of dividends, which produces a much smaller value for the

aggregate price-dividend ratio of about 27. In both calibrations, we choose σ = 0.047

to approximately match monthly market volatility.

In column (i) with a high price-dividend ratio of 60 the average return, autocorre-

lation, and volatility of the short-term asset are greatly affected by small amounts of

asynchronous price updating in the market index. We set ρ1 = 0.03 and ρ2 = 0.01,

which gives a first-order autocorrelation of the market index of 0.0313, less than half of

what is observed empirically during this sample. This small amount of asynchronous

price reaction produces a measured return of the short-term asset of 1.10% per month,

approximately equal to the average return of the strategy R1 reported by BBK. The

first-order autocorrelation of the short-term asset produced by the model is −0.2582,

also very close to the empirical value of −0.2682. The model also produces large excess
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volatility of the short-term asset. The simulated standard deviation of short-term asset

returns is 0.1160, substantially larger than the volatility of the market return.

Table 3 also reports the market beta from a regression of the short-term asset return

on a constant, the market return, and the lagged short-term asset return. In the absence

of asynchronous prices, the market beta coefficient in this regression would be equal to

one. As suggested by Section 3, the presence of delayed price reaction in the index can

substantially bias downward the estimated beta in the market model regression. In this

calibration the downward bias in beta is much stronger than observed in the data, with

the simulated market model beta of −1.44 substantially less than the empirical value of

0.448. In untabulated results, a regression of the observed short-term asset return on

lagged values of the short-term asset price-dividend ratio also produces a significantly

negative coefficient (−0.58 in the simulation versus −0.17 empirically). Overall, these

results show that a simple model of asynchronous price adjustment in the market index

can quantitatively match the mean return and autocorrelation of market and short-term

asset returns, while also qualitatively capturing excess volatility in the short-term asset,

downward bias in the market model beta, and negative predictability of short-term asset

returns from the short-term asset price-dividend ratio.

In column (ii) of Panel A we carry out a similar analysis with a more modest

growth rate of dividends that produces an aggregate price-dividend ratio of about 27,

much smaller than observed during the BBK sample. To compensate for the smaller

price-dividend ratio, we set ρ1 = 0.075 and ρ2 = 0.015, which are larger than the

first calibration. These values produce a first-order autocorrelation of market returns

of 0.0822, almost exactly matching the empirically observed statistic of 0.0898. The

simulated moments of the dividend strip returns are very similar in this calibration

to those in column (i). The average returns of the short-term asset are slightly higher

(0.0122) and the autocorrelations somewhat more negative (−0.3277). Both calibrations

show the ability to match important quantitative and qualitative aspects of short-term

asset returns, simply by introducing small amounts of asynchronicity in the market
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index.

Replicating the short-term asset return R1 considered in this subsection requires

trading in the spot market to replicate the market index. The costs of such a trading

strategy may not be small. For this reason, BBK suggest that a more appropriate

strategy to empirically evaluate is the dividend steepener return given in (7), which we

now consider.

B. Measurement Error in Prices and the Dividend Steepener

In principle, the dividend steepener return in (7) can be obtained by trading only in

futures markets, with a long position in maturity T1 and a short position in maturity

T2 > T1. BBK choose T2 ≈ 18 months and T1 ≈ T2 − 12 months. In practice, most of

the analysis in BBK is based not on trading in futures markets, but on approximate

replication of the steepener strategy by trading in puts and calls of equivalent maturities

and relying on the accuracy of the put-call parity relations (4) and (5).

In this subsection, we consider the impact of small amounts of measurement error

in the futures prices imputed from market data on the calculated average returns of the

short-term asset. We assume no asynchronicity of prices in this subsection, but rather

permit that observed futures prices relate to fair value by

F o
t,T = Ft,T e

ηt,T . (35)

We assume for convenience that the ηt,T are independently drawn from a normal dis-

tribution with mean zero and standard deviation ση. Hence, the observed prices are

unbiased estimates of the true prices, but may contain small errors. Consistent with

the idea of limits to arbitrage, our setup permits that standard no-arbitrage relations

hold very closely, but not exactly.

In column (i) of Panel B in Table 3, we again set the growth rate of dividends

g = 0.0042 to approximately match the average aggregate price-dividend ratio of the

market of about 60 during this sample period. We then set ση = 0.0009, which

reflects a fairly small measurement error. For comparison, the average bid-ask spread
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in liquid futures contracts during this period was about 3 basis points, which gives an

idea of the potential accuracy of price measurements in actual futures market prices.

Moreover, the prices used by BBK in most of their analysis are not actual futures

prices, but are imputed from put-call parity using quotes matched as closely as possible

in time from S&P 500 index options markets. While BBK make every effort to be as

accurate as possible in their approach, the reality of limits to arbitrage and imperfect

observability of wholly synchronous prices in real time makes it plausible to assume

small measurement errors in prices.9

The consequences of these small measurement errors are shown in Table 3. In

column (i) of Panel B the average observed return of the dividend steepener is 1.17%

per month, more than double the true dividend steepener return, which equals the true

market return of 0.056% per month. Hence, small, zero-mean errors in observed prices

produce a large bias in the calculation of average returns for the dividend steepener.

Other symptoms of the small measurement errors in prices are the large negative au-

tocorrelation of returns of the measured dividend steepener returns, equal to −0.4165.

This negative autocorrelation is entirely the consequence of small measurement errors,

as the autocorrelation of the true steepener return series is zero by construction. The

steepener return series also displays substantial excess volatility.

Similar effects can be seen in column (ii) of Panel B, where we more conservatively

set g = 0.0025 to generate a much lower level of the price-dividend ratio, about 27. In

this case, we increase the measurement error standard deviation to ση = 0.0015. The

effect on average returns and variances is smaller than column (i), but still economically

meaningful, inflating mean returns of the dividend steepener by about 50% relative to

their true value (0.0086 versus 0.0056).

Hence, either small amounts of price asynchronicity (Panel A of Table 3) or mea-

surement error (Panel B) can generate high returns, strong negative autocorrelation,

and excess volatility of short-term dividend strips as observed in the data. The primary

9For evidence of the imperfect correspondence between observed futures prices and those imputed from
put-call parity, see Figure 5 of BBK.
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difference in the consequences of these two microstructure frictions can be seen in the

last row of Table 3, which shows that the market model beta of the dividend steepener

return is approximately one. Hence, while price asynchronicity causes a downward bias

in the market model beta coefficients of dividend strip returns (Panel A), iid measure-

ment error does not cause substantial bias in the estimated market model regression

coefficient (Panel B). The empirical values of the market model regression betas are

0.448 for R1 and 0.4863 for R2, in between the model values in Panels A and B. This

suggests that a combination of price asynchronicity and measurement error will be able

to approximately match all of the main features of dividend strip returns shown in

Table 3, as we now show.

C. Full Model

Panel C of Table 3 shows two ways of combining price asynchronicity with measurement

error. In the first case, we set

F o
t,T = [(1− ρ1,T )Ft,T + ρ1,TFt−1,T ]eηt,T .

This permits a small amount of slow price adjustment in the futures price, in addition

to measurement error. In column (i) we show results for a calibration with a tiny

amount of slow price adjustment in the 6-month contract that forms the long-side of

the steepener contract (ρ1,T1 = 0.009) with no price delays in the 18-month contract

that forms the short side of the steepener. Combined with measurement error, this

specification matches the mean returns, autocorrelations, excess volatility, and market

model regression beta of the empirical data.

Alternatively, it seems unlikely that any one futures contract is always more infor-

mationally efficient than another liquid contract, in the sense of always incorporating

current pricing information sooner and more fully. To accommodate that information

about prices may at different times enter more quickly into one contract or the other,

we allow that an iid draw of a random variable determines which contract receives a
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news shock at each date t. Specifically, let observed futures prices be given by

F o
t,T =

 Ft,T e
ηt,T if 1t,T,lagger = 0[

(1− ρ1,lagger)Ft,T + ρ1,TFt−1,T

]
eηt,T if 1t,T,lagger = 1,

where 1t,T,lagger takes the value zero when the contract with maturity T fully incor-

porates available information at time t, and takes the value one when the contract

includes lagged price information. We assume that at each date t, one of the contracts

T1 and T2 used to form the steepener fully incorporates all available information, and

the other is a lagger. The realization of which contract is the lagger is an iid draw

in each period, and in our calibration we set P ([1t,T1,lagger = 1] = 2/3), so that the 18

month contract on average has more current information. This specification, shown

in column (ii) of Panel C also allows us to match the mean returns, autocorrelations,

excess volatility, and market model regression beta of the empirical data on observed

dividend strip returns. Hence, small amounts of asynchronicity and measurement error

combine to produce the principal features of dividend strip returns.

D. Implicit Leverage and Average Returns

The previous sections have shown that mean-zero microstructure frictions, either asyn-

chronous price adjustment or measurement error, cause observed short-term dividend

strips to have upward-biased mean returns, apparent excess volatility, and negative cor-

relation in returns. We now show how these effects change as we vary the horizon of a

short-term dividend strip, which affects the implicit leverage of the long-short position.

Figure 2 shows the implicit leverage, average returns, volatility, and autocorrelation

of the dividend strip given by the short-term asset Pot,T , as we vary the maturity T from

6 to 60 months. All other aspects of the calibration in this example are identical to Table

3, Panel A, column (i). As the maturity of the dividend strip shortens, the implicit

leverage in the long-short position increases dramatically. Assuming an annualized

price-dividend ratio of approximately 60, the average over the BBK sample period,

a six-month dividend strip has implicit leverage exceeding 100. Small microstructure

frictions in primary markets become greatly magnified in the synthetic return series, as
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reflected in the high returns and excess volatility shown in the figure at short maturities.

For longer maturities the implicit leverage falls and the importance of the microstructure

effects in the synthetic return series lessens.

In the third panel, the autocorrelation function shows a distinctive pattern of first

being negative, reaching a minimum at a short maturity less than one year, and then

increasing to eventually become positive. The changing autocorrelation reflects a chang-

ing balance between two effects. On the one hand, the value of the short-term asset is a

fraction of the value of the aggregate market, and the observed returns of the aggregate

market have positive persistence. When the dividend strip has a long maturity this ef-

fect dominates. On the other hand, the appearance in the numerator and denominator

of (34) of the current and lagged true price change causes negative autocorrelation in

returns. This effect is more pronounced for more levered dividend strips with shorter

maturities T , consistent with our results in Section 3.

Figure 3 shows similar plots in the case where returns are impacted by iid measure-

ment errors rather than asynchronous price changes. Again, the implicit leverage of

dividend strips magnifies the importance of microstructure effects, and shorter maturi-

ties show higher apparent average returns and excess volatility. The autocorrelations in

the third panel are always negative consistent with our results in Section 3, and become

closer to zero for longer maturities.

In both figures, synthetically replicating a short-term dividend strip requires high

leverage in nearly offsetting long and short positions. The greater the leverage, the more

the amplification of small pricing errors in the fundamental securities used to create the

replicating portfolio. The true term structures of risk premia and volatilities underlying

both figures are flat. Hence, the amplification of small microstructure frictions entirely

generates the apparent downward-sloping term structures of risk premia and volatilities

in both figures.
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E. Cointegration and Price versus Return Correlations

Most of the empirical analysis in BBK is based on using the put-call parity relations

(4) and (5) to impute futures prices from option markets. The only analysis in BBK

using actual futures prices is a paragraph on robustness (their Section 5.2), which

shows that the correlations of short-term asset prices calculated from options versus

futures markets are 94% and 91% for 6-month and 1-year maturities respectively. BBK

conclude that because futures markets are highly liquid and the short-term asset prices

obtained from futures and options markets are similar, microstructure frictions are an

unlikely explanation for their findings.

It is important to distinguish between high correlation of prices and high correlation

of returns. In all of the models we have developed in this paper, the correlation between

fair value and observed short-term asset prices is high. Nonetheless, we find large

differences in average returns. Figure 4 shows this using a simulation of 180 months of

prices and returns from the model of Table 3, Panel C, column (ii). The correlation of

prices in this example is 93.67%. Hence the implied measurement error in true versus

actual returns in the model is of a similar magnitude to the implied measurement error

in the difference between actual futures prices and futures prices inferred from options

markets in the results reported by BBK (see also their Figure 5). However, despite the

high correlation of the two price series in the model the correlation of the measured

and true monthly returns are only 19.82%.

The large difference in the autocorrelations of prices and returns is possible because

the true and actual return series in the model are cointegrated. Attempts by arbi-

trageurs to take advantage of profit opportunities imply that the difference between

true and measured prices in financial markets must be small and temporary. However,

returns may be different and are predictable in the short-run by differences between

true and measured prices. A similar cointegrating relationship holds for futures prices

measured directly or via put-call parity from the options markets. In either case, the

similarity of prices does not imply a high degree of closeness in returns, either realized
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or on average. In particular, despite the high price correlation between true and mea-

sured prices of the short-term asset shown in Figure 4, the average monthly measured

return is twice as high as the average monthly true return (1.12% versus 0.56%). The

higher average of the measured return is offset by its strong negative autocorrelation,

which substantially dampens the positive effects of compounding over longer horizons,

following our discussion in Section 2. In general, high correlation of two price series, or

apparent cointegration between two price series, is not informative about the closeness

of their average returns. In particular when one series is subject to strong microstruc-

ture bias, generating significant return autocorrelations, the short-horizon average must

be biased to compensate. These biases are greatly mitigated in returns measured over

longer horizons, as we now show.

V. New Estimates of the Dividend Term Premium

In this Section, we reexamine the performance of dividend strip strategies using return

measures that are more robust to microstructure frictions. We find no evidence that

short-term assets outperform the index by a statistically significant margin.

We extract returns of the two investment strategies (R1 and R2) from BBK (2010).10

Table 4 shows that moments from the extracted data precisely match those reported in

BBK.11 Monthly returns of both investment strategies are extremely volatile and show

strong negative autocorrelation. Consistent with the arguments in Section 2, average

monthly returns are therefore biased upward. To confirm this, Table 5 compares aver-

ages of returns compounded at different horizons. Whereas the average monthly return

of the dividend steepener strategy (R2) reaches 1.13% (14.44% per year), the average

annual return scaled to a monthly frequency amounts to just 0.72% (8.99% per year).

By contrast, the average returns of the S&P 500 index are relatively similar across

10Figures 5 and 6 of the BBK (2010) working paper are plotted using vector graphics, which allows us to
accurately extract monthly returns using Adobe Photoshop.

11We use the value-weighted S&P 500 index from CRSP. Market excess return,
HML and SMB factors, and the risk-free rate are from Ken French’s data library,
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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horizons, equalling 0.58% and 0.53% respectively for monthly returns and annual re-

turns rescaled to a monthly horizon. Consequently, using longer-horizon annual returns

where the impact of microstructure frictions are proportionately smaller, the difference

in performance between the dividend steepener strategy and the index reaches only a

statistically insignificant 0.19% monthly.

Most of the difference in average returns of the short-term asset and the index is

attributable to the first half of the sample. For example, Table 5 shows that the dif-

ference in average returns R1 of the short-term asset and the S&P 500 index amounts

to 0.90% monthly in the first half but reaches just 0.23% in the second half. Autocor-

relation of the short-term asset returns is more negative and volatility is higher during

the 1996-2002 period. Moreover, liquidity of the assets used to compute returns R1

and R2 was likely lower earlier in the sample. It is thus not surprising that the horizon

effects are particularly striking in the first half of the sample. For example, when the

annual compounding horizon is used, the difference in average returns of the short-term

asset R1 and the index amounts to 0.49% monthly in the first half and 0.30% in the

second half of the sample. More striking, the corresponding difference in returns of

the dividend steepener strategy R2 and the index is negative, measuring −0.05% per

month during the first half of the sample, remarkably lower than the monthly return

mean difference of 0.72% that BBK focus on.

Figure 4 graphically confirms that the cumulative performance of the short-term

asset and the index are very similar. An investment in the dividend steepener strategy

in 1996 produced a lower cumulative return than an investment in the S&P 500 index

through 2002. A one dollar investment in either strategy grew to the same amount

($2.10) by the end of June 2004. Moreover, during the last four years of the sample

(2006-2009), cumulative returns of the two investments were largely similar. Thus the

difference in average returns of the dividend steepener (1.13%) and the index (0.58%)

are not representative of what a long-term investor would realize. To illustrate this

point further, Figure 4 also plots cumulative returns of two hypothetical strategies
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that every month earn 1.13% and 0.58%. Comparing the differences, the one-month

average returns give a remarkably misleading view of the performance of the strategy.

These biases are entirely consistent with the effects of small pricing errors in primary

markets, which become amplified when using no-arbitrage relations to impute fair values

of dividend strips.

VI. Conclusion

We show that small mean-zero pricing frictions can create enormous biases in the mea-

sured short-horizon average returns, autocorrelations, volatilities, and predictability of

synthetic dividend strips. Dramatic amplification of small microstructure effects occurs

because of the leverage implicit in the synthetic dividend strips, which are created from

long-short positions in derivative markets and typically have a net value only a small

fraction of the long and short positions used in their construction. Using calibrated

models where fundamental returns are iid and the term structure of equity risk premia

is flat, but permitting small mean-zero frictions, we are able to match all of the principal

empirical features of measured short-horizon synthetic dividend strip returns.

Empirically, longer-horizon returns are less impacted by short-run microstructure

effects than monthly returns, and present a quite different picture of the returns to a

dividend strip investment strategy. The cumulative returns to the dividend steepener

strategy are actually below the cumulative returns of an investment in the market index

over nearly the entire first half of the 1996-2009 sample, while the average monthly

returns appear to show a sixty basis point per month outperformance over the same

period. Over the entire sample period, we find little evidence of a statistical or economic

difference in the longer-horizon returns to dividend strip strategies.

Our results show the importance of limits to arbitrage even for seemingly reliable

relationships such as futures-spot and put-call parity. Small errors in these relationships

can become greatly magnified when one constructs long-short positions to attempt to

create return profiles that are not directly tradeable in financial markets. These biases
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particularly impact short-horizon average returns, variances, autocorrelations, and beta

estimates. We expect there may be other interesting applications of these ideas, for

example in evaluating the performance of pairs trading strategies, or in the evaluation

of hedge fund strategies that require high leverage.
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Appendix

Proof of Proposition 1

Equation (14) follows from a Taylor series expansion of the two variable equation (13)
around rxt = ln(Rx

t ) = 0 and ηt = 0. Equation (15) follows from a Taylor series
expansion of the expression

Pot,T = Pt,T + (Sot − St) (36)

= St(e
−`t,T + ρe−r

x
t − (1 + ρ) + eηt) (37)

around the three points `t,T = ¯̀
T , rxt = 0, and ηt = 0.

Proof of Proposition 2

Equations (18) and (19) are the standard Campbell and Shiller (1988) log-linearizations
of the index and dividend strip returns. Equations (16) and (17) then follow from first-
differencing the relevant expressions for log ex-dividend index and dividend strip prices
in equations (14) and (15). Note that to simplify the expression, the expansion for
Pot−1,T+1 is around ¯̀

T , which represents the average dividend-price ratio for the short-
term asset Pot,T .
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Table 1. Back of the Envelope Calculation

A. Estimates from BBK B.
One-month Returns 12-month Returns

Portfolio R̄ σ ρ1 R̄RS12 V R12 R̄BH12

S&P 0.0056 0.0469 0.0898 0.0693 1.1646 0.0716
R1 0.0116 0.0780 -0.2682 0.1484 0.5083 0.1280
R2 0.0112 0.0965 -0.3668 0.1430 0.3275 0.1008

Difference

R1 − S&P 0.060 -0.3580 0.0791 0.0791 0.0564
R2 − S&P 0.056 -0.4570 0.0737 0.0737 0.0292

Notes: This table reports in Panel A estimated moments for the S&P index and the two
short-term assets from Binsbergen, Brandt, and Koijen (2011). Panel B compares the
rescaled simple monthly return R̄RSin ≡ E [Rit]

n with an estimated buy-and-hold return
R̄BHin ≡ E [Ri,t+1 · · ·Ri,t+n], n = 12 obtained from the approximation

R̄RSin
R̄BHin

= enσ
2
i (1−V Rin)/2,

provided in Boguth, Carlson, Fisher, and Simutin (2011). The key parameter in the approx-
imation, the variance ratio V Rin ≡ σ2

in/
(
nσ2

i

)
is computed under the assumption that all

autocorrelations of order greater than one are zero.
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Table 2. Microstructure Bias in Leveraged Portfolios

ρ = 0 ρ = 0.05 ρ = 0.1
L̄T σ(η) = 0 0.05% 0.1% σ(η) = 0 0.05% 0.1% σ(η) = 0 0.05% 0.1%

A. Return Standard Deviation (%)
10 4.00 4.06 4.24 2.83 2.92 3.16 4.00 4.06 4.24
30 4.00 4.53 5.83 6.32 6.67 7.62 14.42 14.58 15.03
50 4.00 5.34 8.12 11.66 12.19 13.64 25.61 25.86 26.57
70 4.00 6.36 10.68 17.20 17.90 19.85 36.88 37.21 38.18
90 4.00 7.52 13.34 22.80 23.67 26.12 48.17 48.58 49.82

B. Expected Simple Return (%)
10 0.30 0.30 0.31 0.26 0.26 0.27 0.30 0.30 0.31
30 0.30 0.32 0.39 0.42 0.44 0.51 1.27 1.29 1.36
50 0.30 0.36 0.55 0.90 0.97 1.16 3.56 3.63 3.82
70 0.30 0.42 0.79 1.71 1.84 2.21 7.27 7.40 7.80
90 0.30 0.50 1.12 2.86 3.07 3.70 12.55 12.78 13.46

C. Return Autocorrelation
10 0.00 -0.02 -0.06 0.50 0.44 0.30 0.00 -0.02 -0.06
30 0.00 -0.11 -0.26 -0.30 -0.32 -0.36 -0.46 -0.46 -0.46
50 0.00 -0.22 -0.38 -0.44 -0.45 -0.46 -0.49 -0.49 -0.49
70 0.00 -0.30 -0.43 -0.47 -0.48 -0.48 -0.49 -0.49 -0.49
90 0.00 -0.36 -0.46 -0.48 -0.49 -0.49 -0.50 -0.50 -0.50

D. Market Beta
10 1.00 1.00 1.01 0.55 0.56 0.57 0.12 0.13 0.14
30 1.00 1.01 1.04 -0.44 -0.43 -0.40 -1.83 -1.82 -1.78
50 1.00 1.02 1.06 -1.44 -1.42 -1.37 -3.78 -3.76 -3.70
70 1.00 1.02 1.09 -2.43 -2.41 -2.33 -5.73 -5.70 -5.62
90 1.00 1.03 1.11 -3.43 -3.39 -3.30 -7.68 -7.65 -7.53

Notes: This table reports moments of the ex-dividend return of the short-term asset for
varying microstructure parametrization (ρ ∈ {0, 0.05, 0.1}, σ(η) ∈ {0, 0.0005, 0.001}) and for
different price-dividend ratios (L̄T ∈ {10, 30, 50, 70, 90}) following the approximations from
Proposition 2. Panel A shows return standard deviations, Panel B expected simple ex-dividend
returns, Panel C return autocorrelations, and Panel D observed market betas. The log ex-
dividend return has a mean of 0.22% and a standard deviation of 4%, so that simple return
in the absence of microstructure frictions average 0.3%.
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Table 3. Comparison of Model versus Empirical Moments

A. B. C.
Asynchronous Measurement Full

Prices Error Model Empirical Value

Parameter (i) (ii) (i) (ii) (i) (ii) R1 R2

T1 0 0 6 6 6 6 0 6
T2 12 12 18 18 18 18 12 18
gd 0.0042 0.0025 0.0042 0.0025 0.0042 0.0042
ρ1,T1 0.03 0.075 0 0 0.009 0

ρ2,T1 0.01 0.015 0 0 0 0

ση 0 0 0.0009 0.0015 0.0009 0.0003
ρ1,lagger - - - - - 0.0025

P (lagger = T1) - - - - - 2/3

Moment

R̄M 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 - -
ρ1(RM ) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - -
R̄P 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 - -
ρ1(RP) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 - -

R̄oM 0.0054 0.0054 - - - - 0.0056 -
R̄oM − r̄f 0.0025 0.0025 - - - - 0.0027 -
ρ1(RoM ) 0.0313 0.0822 - - - - 0.0898 -
std(RoM ) 0.0454 0.0431 - - - - 0.0469 -
PD(RoM ) 60 27 60 27 60 60 60 -

R̄oP 0.0110 0.0122 0.0117 0.0086 0.0110 0.0112 0.0116 0.0112
ρ1(RoP) -0.2582 -0.3277 -0.4165 -0.3703 -0.4088 -0.4080 -0.2682 -0.3668
std(RoP) 0.1161 0.1249 0.1201 0.0947 0.1156 0.1157 0.0780 0.0965
βoP -1.4401 -1.4635 1.0010 1.0030 0.4731 0.4767 0.4480 0.4863

Notes: This table shows moments of observed market and dividend strip returns under cali-
brations of the models described in Section 3. All models set the risk-free rate to rf = 0.029
per month, the market return drift to µ = 0.056 , and the variance of dividends to σ = 0.047
per month. In each column, the model is simulated for 200,000 months to obtain the moments
reported in the table.
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Table 4. Comparison of Extracted and BBK Moments

R1 R2 S&P 500
Extracted Extracted CRSP

BBK Data BBK Data BBK VW Index

A. Full Sample
Mean 0.0116 0.0115 0.0112 0.0113 0.0056 0.0058
Median 0.0079 0.0081 0.0148 0.0148 0.0106 0.0109
Std. Dev. 0.0780 0.0781 0.0965 0.0963 0.0469 0.0468
Sharpe ratio 0.1124 0.1106 0.0872 0.0876 0.0586 0.0635
AR(1) -0.2682 -0.2719 -0.3668 -0.3825 0.0898 0.0887
Market alpha 0.0073 0.0071 0.0069 0.0069
Market beta 0.4721 0.4729 0.4847 0.4835
Market model R2 0.0877 0.0878 0.0604 0.0603
FF alpha 0.0065 0.0064 0.0053 0.0053
FF market beta 0.4880 0.4891 0.5712 0.5700
FF value beta 0.1393 0.1396 0.3744 0.3769
FF size beta 0.0751 0.0739 -0.0279 -0.0253
FF model R2 0.0915 0.0916 0.0811 0.0813

B. First Half
Mean 0.0159 0.0158 0.0139 0.0140 0.0065 0.0068
Median 0.0117 0.0113 0.0231 0.0243 0.0093 0.0096
Std. Dev. 0.0986 0.0987 0.1212 0.1208 0.0514 0.0514
Sharpe ratio 0.1242 0.1230 0.0843 0.0856 0.0456 0.0619

C. Second Half
Mean 0.0072 0.0071 0.0086 0.0085 0.0046 0.0047
Median 0.0058 0.0058 0.0086 0.0087 0.0118 0.0120
Std. Dev. 0.0494 0.0495 0.0630 0.0630 0.0422 0.0418
Sharpe ratio 0.1060 0.1027 0.1044 0.1033 0.0615 0.0658

Notes: This table reports moments of the two short-term assets (R1 and R2) and the S&P
500 index. BBK moments are taken from Binsbergen, Brandt, and Koijen (2011). To obtain
Extracted Data moments, R1 and R2 returns are imputed from Figures 5 and 6 of the 2010
working paper version of BBK. The last column shows moments from CRSP value-weighted
S&P 500 index. Shown are means, medians, standard deviations, and Sharpe ratios for the
full sample (1996:2-2009:10) and the two subsamples (1996:2-2002:12 and 2003:1-2009:10),
as well as AR(1) coefficients from the GARCH(1,1) model, and parameter estimates and R2

values from the market and Fama-French (FF) 3-factor models for the full sample.
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Table 5. Horizon Effects in Short-Term Asset Returns

Rescaled Average Returns p-values
Ri − SP P (Ri ≤ SP ) P (Ri = SP )

Horizon R1 R2 SP R1 R2 R1 R2 R1 R2

A. Full Sample
1 month 1.15 1.13 0.58 0.57 0.55 0.15 0.19 0.30 0.38
3 months 1.02 0.92 0.59 0.43 0.32 0.20 0.25 0.40 0.50
6 months 1.02 0.88 0.58 0.44 0.30 0.21 0.25 0.42 0.50
12 months 0.92 0.72 0.53 0.39 0.19 0.25 0.35 0.50 0.70
165 months 0.84 0.66 0.47 0.37 0.19 - - - -
1 month log 0.84 0.66 0.47 0.37 0.19 0.24 0.38 0.49 0.75

B. First Half
1 month 1.58 1.40 0.68 0.90 0.72 0.18 0.26 0.36 0.52
3 months 1.31 0.88 0.70 0.61 0.18 0.26 0.42 0.52 0.84
6 months 1.28 0.81 0.64 0.63 0.16 0.27 0.42 0.54 0.84
12 months 1.18 0.65 0.70 0.49 -0.05 0.33 0.52 0.66 0.96
1 month log 1.09 0.66 0.55 0.54 0.11 0.29 0.46 0.57 0.92

C. Second Half
1 month 0.71 0.85 0.47 0.23 0.38 0.31 0.24 0.62 0.47
3 months 0.74 0.95 0.49 0.25 0.46 0.25 0.11 0.50 0.22
6 months 0.76 0.95 0.51 0.25 0.44 0.19 0.05 0.38 0.10
12 months 0.65 0.78 0.36 0.30 0.43 0.13 0.05 0.26 0.10
1 month log 0.58 0.65 0.38 0.20 0.27 0.33 0.29 0.66 0.59

Notes: This table reports average returns (in percent) of the two short-term assets (R1 and
R2) and the S&P 500 index (SP), calculated as (E[Ri,t+1 · · ·Ri,t+n])1/n, where Ri,t is the asset
gross return in month t and n is the compounding horizon. Overlapping windows are used.
Also reported are the differences in average returns of the short-term assets and the index
and the associated p-values (based on a one-tailed test) computed using Newey-West (1987)
methodology with n lags. Full sample covers 1996:2-2009:10, first half is 1996:2-2002:12, and
second half is 2003:1-2009:10.
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Figure 1. The Effects of Implicit Leverage on Dividend Strip Returns: Case I,
Asynchronous Price Adjustment. This figure plots the average returns, volatility, and
autocorrelation of the short-term asset return for different maturities T of the short-term
asset. We use the base calibration of Table 3, Panel A, column (i), in which asynchronous
prices cause small persistence in index returns.
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Figure 2. The Effects of Implicit Leverage on Dividend Strip Returns: Case II,
Measurement Error. This figure plots the average returns, volatility, and autocorrelation
of the short-term asset return for different maturities T of the short-term asset. We use the
base calibration of Table 3, Panel B, column (i), in which measurement error impacts futures
prices. We set the maturity T1 of the long position to one month and the maturity T2 of the
short position varies along the horizontal axis of the figure.
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Figure 3. Cointegration between True and Measured Dividend Strip Prices. This
figure plots simulated true and measured dividend strip prices using 180 months of data drawn
from the calibration given in Table 3, Panel C, column (ii). The correlation of the two price
series is high (approximately 94%), but the correlation of returns is much lower (20%). The
unconditional average of the measured return series is approximately twice as high as the
unconditional average of the true return series. (See Table 3.)
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Figure 4. Comparison of Investment Performance. This figure plots the value of a
$1 investment in the dividend steepener strategy (R2), the value-weighted S&P 500 index,
and two hypothetical strategies whose returns each month equal to the average returns of the
dividend steepener strategy (1.13%) and the S&P 500 index (0.58%).


