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Abstract. Large and patient traders have strong incentives to find natural counter-

parties, as it allows them to trade larger amounts at lower costs. The key challenge is

that buyers and sellers must coordinate to find and trade with each other. Our theo-

retical model shows that searching for a counterparty can be done by means of order

splitting, where a large quantity is broken up into many individual trades executed over

the trading day. Order splitting facilitates the coordination, as it signals one’s trading

interest to the market and helps detecting the presence of counterparties. We confirm

empirically that the presence of counterparties can be detected in real-time, and that

the behavior of counterparties affects parent order characteristics. For example, for a

one-standard deviation increase in volume by a natural counterparty, order sizes are

approximately 17% larger and have an implementation shortfall 7.6 basis points lower,

which is sizeable compared to a sample average of 6.2 basis points.
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1. Introduction

Institutional investors typically trade large quantities of shares by splitting up the parent order

into many small child trades, executing them gradually over the trading day. In this paper, we

argue that order splitting may serve as a coordination mechanism, allowing institutional investors

to strategically interact with the orders present in the market.

The intuition is as follows. Order splitting gradually reveals trading intentions to the market.

If a natural counterparty is present, i.e., a trader with a different private value, then he will also

signal his presence through order splitting. As both traders observe order flows and gradually

infer each others’ private values, they can start trading larger amounts without moving prices—

realizing larger gains from trade. However, if all traders in the market have similar private

values, the trading pressure will quickly move the price towards this value and profitable trading

opportunities disappear.

We formalize this argument in model of a dynamic financial market. Two long-lived investors

A and B receive a normally distributed private value shock for the asset at the start of the game,

and trade each period to maximize expected gains from trade. Trading is modeled using the batch

auction framework of Kyle (1985), where a market maker and a noise trader are also present.1

We solve for the unique linear Bayesian Nash equilibrium, and find a recursive solution for the

optimal trading strategies. In a given period, the optimal trade is linear in two state variables.

First, each trader trades on his own private valuation to directly generate a gain from trade.

Second, they trade on the expected private value of the counterparty with a negative parameter.

That is, if the counterparty is expected to buy, then the current trader will sell more (or buy less)

to provide liquidity.

The novel feature of the model is that each trader tries to signal his own private value and

learn the private value of the other. In equilibrium, both traders provide liquidity to each other,

and this liquidity provision gets stronger over time as they learn each others’ private valuations

more precisely. Further, as time passes, both traders anticipate more liquidity provision by the

1We deviate from Kyle with a strong assumption: we consider a private values environment and abstract away
from asymmetric information and informed. The aim of the model is to focus on the strategic interactions between
A and B, and we wish to minimize the role of the market maker.
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other, which in turn allows them to trade more aggressively on their own private valuation. The

two effects reinforce each other, which effectively is a form of coordination where both traders

eventually trade very aggressively and realize large gains from trade. This coordination is remi-

niscent of pre-announcing trading interest or sunshine trading (Admati and Pfleiderer, 1991), but

arises here in a dynamic context.

The signaling result is surprising since investors typically split up an order to camouflage

their trading (as in, e.g., Kyle (1985) or Vayanos (1999)). By hiding their trades, an investor

also reduces the risk of “predatory trading,” where other investors exploit the order by trading

in the same direction (Brunnermeier and Pedersen, 2005). Predatory trading is outside the scope

of the model, but it would most likely not arise. Our investors have a private value for the asset,

meaning they simply buy or sell if the price is below or above this value. Predatory trading only

arises when a trader is forced to liquidate an exogenous position.

The model yields three key testable predictions which we take to the data. First, the sizes of

parent orders are highly endogenous because they depend on the private value of the counterparty.

That is, if one has a positive private value and the other a negative one, both will trade very

large quantities. However, if both investors have positive values (or both negative), then the price

will quickly adjust and aggregate quantities will remain small. This contrasts with the optimal

execution literature which assumes an investor must trade a fixed (exogenous) amount before a

deadline (see e.g., Almgren and Chriss (1999, 2000)). The second prediction is that each trader

learns about the private value of the counterparty by analyzing price changes. This Bayesian

updating gradually improves over time and affects the trading behavior. The third testable

prediction is that the presence of counterparties strongly affects institutional trading costs. This

predictions quantifies the advantage of searching and finding a natural counterparty.

We test the three predictions using a proprietary dataset of trades and quotes with trader

identification for Finnish index stocks in 2007. We identify 30,092 institutional parent orders and

their child trades, following the definition in the literature (Korajczyk and Murphy, 2018, van

Kervel and Menkveld, 2018). The key advantage is that we observe all parent orders active at

any given point in time, and can hence investigate how they interact with each other.
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Parent orders are frequently overlapping. During the life of an average order order, 17.3% of

market volume is executed by other parent orders in the opposite direction to the current order,

and 8.2% in the same direction. Consistent with the model, parent orders are more likely to trade

in opposite direction (i.e., one is buying and the other selling).

We confirm the first prediction that the institutional order direction and size depend on the

presence (and size) of counterparties. A Logit regression reveals that a new parent order is 4%

more likely to be a buy (rather than a sell) for each additional sell parent order active in the

30-minute interval prior to the start of the order. Similarly, a one standard deviation increase in

sell volume by existing orders in this interval is correlated with an increase in the size of a new

buy order of 15.7%. The results are symmetric for existing buy orders on new sell orders. These

magnitudes are economically sizable, but we caution that they are only correlations.

The second prediction states that an investor can detect the presence of a counterparty by

analyzing the price patterns. The model has Bayesian update equations, and empirically we

propose to proxy these by using the realized spread of a parent order. The intuition is as follows.

Suppose the current order is buying and pushing up the price, while another sell order is active

pushing back the price. In this case, the selling pressure causes a reversal in prices which increases

the buy orders’ realized spread. If the other investor was buying this spread would decrease.2

Empirically, we confirm that, at the parent order level, the realized spread of an order is

correlated with trading volume of other parent orders in the same and opposite direction, as

predicted by the model. The economic magnitudes are sizable, proving that the realized spread

may indeed serve as a detection mechanism.

We then continue to show that the realized spread also works as a detection mechanism in

real time. Measured at the half-hour frequency we find that the realized spread in period t − 1

predicts the order flow (participation rate) of the current parent order in period t. We also find

that the realized spread is correlated with the participation rate of other institutional investors—

both in the same and opposite direction of the current order. The signs of the correlations are

2In the traditional microstructure literature, the realized spread is a proxy for the profits to the market marker.
This interpretation is no longer valid in our model, where all reversals in prices are due to the order flows of the
two strategic traders—which is captured by the realized spread.
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consistent with the predictions of the model. This suggests that the realized spread is in fact a

measure that can be constructed in real time to detect a counterparty. Important to note is that

any institutional investor can construct this measure, as it does not require our proprietary data.

The third and final prediction of the model relates the impact of a counterparty on trading

costs. Regressions at the parent order level confirm that a one standard deviation increase in

trading volume by institutional investors in the opposite direction is correlated with a reduction

in the implementation shortfall of 7.6 basis points, which is sizable given a sample average of 6.2

basis points. We also find that the coefficient on institutional trading volume in the opposite

direction is similar to the impact of one’s own order size on implementation shortfall. In the

literature, the largest determinant of implementation shortfall is the size of the order, and our

analysis reveals that the impact of other institutional orders is of similar magnitude. This suggests

that the potential advantage of having a natural counterparty is indeed quite large.

We then analyze the source of the trading cost advantage of counterparties. We find that

a parent order is more likely to be liquidity motivated when other parent orders are trading in

the opposite direction. That is, such orders have a low permanent price impact. Conversely,

when multiple parent orders trade in the same direction, all have a much higher permanent

price impact. This suggests that natural counterparties are particularly important for liquidity

motivated traders, and this corresponds well to the private value environment in the theoretical

model.

At this point we want to stress an important caveats. The empirical results are mere correla-

tions, and we cannot interpret these as causal effects. In fact, obtaining causality is particularly

challenging given that the theory shows that institutional orders highly endogenous: one order

simultaneously affects and is affected by other orders. Despite this issue, we still believe the

model is useful in guiding the empirical analysis and in interpreting the results. The fact that

our results are consistent with many different predictions of the model suggests that the tradeoffs

and mechanisms in the model are empirically at play as well.

The dynamic interaction between strategic investors has become increasingly important with

the rise of order splitting algorithms and other dynamic trading strategies. There are two papers
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most closely related to our work. Vayanos (1999) studies dynamic interactions between multiple

large traders who trade to hedge endowment shocks. They trade slowly to camouflage these shocks,

as revealing this information would move prices against them. Slow trading prevents large price

impacts, but reduces welfare because of lower risk sharing benefits. This result is opposite to our

model, where the liquidity motivated traders want to signal their private valuations to coordinate

liquidity provision. More recently, Choi, Larsen, and Seppi (2018b) study strategic interactions

between multiple liquidity motivated traders in a continuous time setting. The traders must trade

an exogenous amount, and their performance is benchmarked relative to a TWAP strategy. In

equilibrium, the traders provide liquidity to each other which is traded off against higher penalties

for deviating from the TWAP benchmark.

Our work is also related to papers using the Kyle (1985) framework to model interactions

between strategic traders. Choi, Larsen, and Seppi (2018a) analyze the interaction between a long

lived informed trader and a liquidity motivated trader. They show that the liquidity motivated

trader, who must trade a fixed amount before a deadline, gradually learns about the fundamental

value through his trading. Other papers focus on strategic interactions between multiple informed

traders (e.g. Foster and Viswanathan (1996) and Back, Cao, and Willard (2000)).

2. Model

In this section we propose a model of a dynamic financial market where two strategic traders, A

and B, have private values for an asset. We show that they have an incentive to signal their private

value (i.e., their type) to realize larger gains from trades in future rounds. Our interpretation is

that investors split up orders to find a counterparty in the market.

2.1 Setup

The market is populated by a market maker, two strategic traders, and a noise trader. The

trading mechanism follows Kyle (1985), where trading occurs sequentially in a number of trading

periods. Each period is an anonymous batch auction where the two strategic traders and a noise
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trader submit market orders. The market maker observes the aggregate (net) order flow, and

clears the market by setting the price.

We deviate from Kyle (1985) with a very strong assumption: we abstract away from asym-

metric information, and assume the market maker uses a linear pricing rule with an exogenous

price impact parameter λ. Effectively, the market maker has a constant marginal cost λ of holding

inventory, and she forgoes an optimization. There is no informed trading or adverse selection,

and instead we focus on a model with private values. We simplify as much as possible the role

of the market maker, and rather want to analyze the strategic interactions between two liquidity

motivated traders.

The strategic traders i = {A,B} are risk neutral, and have a private valuation (i.e., “type”)

for the asset that is centered around the public value v of the asset, v + θ̃i, with θ̃i ∼ N (0,Σ20).

The public value does not change over time, and the initial price p0 = v. This implies that if

θ̃A > 0, trader A would be a natural buyer, and if θ̃A < 0 he would be a natural seller. Of course,

depending on the realization of the price path, a trader may switch between buying and selling

depending on sign(v + θ̃i − pn). Here we deviate from the optimal execution literature, which

assumes a trader must trade an exogenous amount before a deadline (e.g., Almgren and Chriss,

1999). There are n = 1, . . . , N trading rounds where the strategic traders submit orders xA,n and

xB,n.

There is a noise trader who submits in each period a random order ẽn ∼ N (0, σ2e/N), which

are all independent from each other and from the types of the strategic traders. The order flow

yn becomes

yn = xA,n + xB,n + ẽn. (1)

The market maker sets the price pn as a linear function of the order flow:

pn = pn−1 + λyn. (2)

In this setup, both traders are aware of each others presence, but they do not know each

others type (i.e., the realization of θ̃). Possibly, one is a natural buyer and the other a natural
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seller, meaning large gains of trade could be had. However, it is equally likely that both traders

want to trade in the same direction (i.e., both are natural sellers or both natural buyers). In that

case gains of trade will be lower, but are still positive since their types are continuous.

Each trader i is strategic and at period n maximizes the expected wealth over all the remaining

periods:

V aluei,n = max
xi,n+1

E

 N∑
j=n+1

xi,j(v + θ̃i − pj)|θ̃i, y1, . . . , yn

 . (3)

At time n = 0 a trader can only condition on his type, but in subsequent periods he can also

condition on the past aggregate orders y1, . . . , yn when choosing order xi,n+1.

Definition 1. The equilibrium concept is a Bayesian Nash equilibrium, which is a set of functions

such that:

• Given the optimal strategy xB,n by trader B, the trades xA,n maximize trader A’s objective

function in Equation 3.

• Given the optimal strategy xA,n by trader A, the trades xB,n maximize trader B’s objective

function Equation 3.

Intuitively, we show that if one trader follows the equilibrium strategy, the other has no incentive

to deviate. We construct a linear Bayesian equilibrium and conjecture that the optimal strategies

take the form:

xA,n = αn(θ̃A − pn−1) + βn(eθB,n−1 − pn−1), β1 = 0,

xB,n = αn(θ̃B − pn−1) + βn(eθA,n−1 − pn−1)
(4)

We consider symmetric strategies (i.e., both traders use the same parameters αn and βn), and

use eθB,n to denote trader A’s expectation of θ̃B after round n. Similarly, trader B’s expectation

of type A after round n is eθA,n. The constants {αn, βn}Nn=1 are determined by maximizing

Equation 3.

Crucially, the optimal strategy of trader A depends on his belief of type B (eθB,n−1), but also

on his belief what B believes type A is. This comes from the expected wealth Equation 3, which

shows that trader A’s trade in round n, xA,n, depends on the expected price pn, which in turn
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depends on the trade by investor B, xB,n.

This second-order expectation will turn out to be a simple one because of the law of iterated

expectations. To see this, note that the information sets of both traders at time n share a

common component (the public information captured by order flow y1, . . . , yn−1), and a trader

specific component (their own type θ̃i). To form the dynamics of the process of eθB,n, it will turn

out useful to first track the public component. Denote the public process by

qn :=E
[
θ̃A|y1, . . . , yn

]
= E

[
θ̃B|y1, . . . , yn

]
=E

[
θ̃A|qn−1, yn

]
=qn−1 + δn(yn − E[yn|qn−1]), q0 = 0.

(5)

The first line shows that, using publicly observed order flow only, one cannot distinguish between

θ̃A and θ̃B, because both traders use symmetric strategies. The second line shows that the history

of the order flow y1, . . . , yn can be summarized by just qn−1 and yn.

Now, trader A can form the expectation eθB,n by using qn and his own type:

eθB,n :=E
[
θ̃B|θ̃A, y1, . . . , yn

]
=E

[
θ̃B|qn

]
+ γn(θ̃A − E

[
θ̃A|qn

]
),

=qn + γn(θ̃A − qn), eθB,0 = 0.

(6)

Trader B can make a symmetrical update, using the same parameter γn (this follows from the

traders having identical variances of their private valuation, Σ0):

eθA,n :=E
[
θ̃A|θ̃B, y1, . . . , yn

]
,

=qn + γn(θ̃B − qn), eθA,0 = 0.

(7)

The higher order expectation, i.e., A’s belief on B’s expectation of θ̃A, becomes just a simple
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update:

E
[
E
[
θ̃A|θ̃B, y1, . . . , yn

]
|θ̃A, y1, . . . , yn

]
= E

[
eθA,n|θ̃A, qn

]
,

= E
[
qn + γn(θ̃B − qn)|θ̃A, qn

]
,

= qn + γn(eθB,n − qn).

(8)

2.2 The optimal execution strategy

We first tackle the problem by trader A. By symmetry, we then have the optimal strategy for B

as well.

The key challenge is that we are looking for equilibrium strategies, meaning we must allow

for potential deviations off the equilibrium path (as in Foster and Viswanathan (1996), and, more

recently, in Choi, Larsen, and Seppi (2018a)).3 For example, if A deviates in round 2 by trading

an additional unit, we must show that the equilibrium strategy in round 3 and onwards is still

optimal. We want to stress that a deviation off the equilibrium path has two consequences. First,

it changes the current (and future) state variables directly (pn, qn, eθA,n, eθB,n), which determine

the beliefs by B and his trades in future rounds. Fortunately, the updating rules and strategies

are all linear, meaning the future changes in the state variables by deviating are fully predictable

to A.

Second, when deviating by choosing a different trade xA,n, the information set of trader A

does not change. That is, A can always filter his own trade from the order flow when forming

expectations about θ̃B. Thus, the learning by A is the same on and off the equilibrium path.

The challenge is that his beliefs are no longer given by Equations 5 and 6, but instead need to

be tracked separately. It is for this reason that Foster and Viswanathan (1996) introduce “hat-

processes” to track all state variables on the equilibrium path, along with the “regular” processes

which may be affected by deviations off the equilibrium path. In the optimization, a deviation

changes the realizations of the regular processes, but not the hat-processes as it capture the beliefs.

For our purpose, we only need to form a hat-process for A’s belief of type B on the equilibrium

3Note that when searching for the optimal strategy of A, we only allow A to deviate: trader B is assumed to
follow the equilibrium strategy (see definition 1). We do not allow both to deviate simultaneously.
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path: êθB,n.4 To form this belief, note that A can always construct the unexpected or surprise

component of the order flow, denoted by zAn :

zAn :=yn − E
[
yn|θ̃A, y1, . . . , yn−1

]
,

=yn − xA,n − αn
(
êθB,n−1 − pn−1

)
− βn

(
qn−1 + γn−1(êθB,n−1 − qn−1)− pn−1

)
.

(9)

We take the order flow Equation 1, insert the strategy rule and higher order expectation (4 and 8),

and replace θ̃B by the expected value êθB,n−1. For A, the process zAn is informationally equivalent

to yn. If A deviated in the past, he (predictably) changed the state variables qn−1 and pn−1, which

accordingly change the expected trade xB,n (represented by the last two terms in Equation 9).

As such, zAn captures the unexpected component of the order flow, and allows him to form:

êθB,n :=E
[
θ̃B|θ̃A, zA1 , . . . , zAn

]
,

=êθB,n−1 + rnz
A
n , eθB,0 = 0.

(10)

On the equilibrium path, eθB,n = êθB,n. We are now ready to state the main result.

Theorem 1. A unique recursive linear Bayesian Nash equilibrium exists, where (i) the parame-

ters αn and βn in the strategy function (4) maximize each traders objective function (3), and (ii)

the parameters {δn, γn, rn} are consistent with Bayesian updating rules. Specifically, for trader A

we have the recursive equations:

xA,n =αn(θ̃A − pn−1) + βn(eθB,n−1 − pn−1),

qn =qn−1 + δn(yn − E[yn|qn−1]), q0 = 0,

eθB,n =qn + γn(θ̃A − qn), eθB,0 = 0,

êθB,n =êθB,n−1 + rnz
A
n ,

Σn :=V ar(θ̃A|y1, . . . , yn) = V ar(θ̃B|y1, . . . , yn),

(11)

where Σn is the variance of type θ̃A (and θ̃B) conditional on the history of order flows. Given the

4The other state variables (pn, qn) are not needed for learning, and therefore we do not require to track them
separately on the equilibrium path.
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exogenous (initial) variance Σ0, the constants solve the unique recursive system:

αn =b1,n + b3,n
γn−1

1− γn−1
,

βn =b2,n − b3,n
γn−1

1− γn−1
,

δn =
(αn + βnγn−1)(Σ0 − 2(Σ0 − Σn−1))

σ2e + 2(αn + βnγn−1)2(Σ0 − 2(Σ0 − Σn−1))
,

γn =
Σn − Σ0

Σn
,

rn =
(αn + βnγn−1)Σ0(Σ0 − 2Σn−1)

σ2e + 2(αn + βnγn−1)2Σ0(Σ0 − 2Σn−1)− σ2eΣn−1
,

Σn =Σn−1 −
(αn + βnγn−1)

2(Σ0 − 2(Σ0 − Σn−1))
2

σ2e + 2(αn + βnγn−1)2(Σ0 − 2(Σ0 − Σn−1))
.

(12)

The recursive constants {b1,n, b2,n, b3,n}Nn=1 are defined in the Appendix.

The proof consists of two parts, and follows the structure of Choi, Larsen, and Seppi (2018a).

The details of the derivations are in the Appendix.

Proof Part 1: Bayesian parameters.

The parameters δn, γn, rn, are coefficients identified using standard Bayesian updating rules.

They are forward recursions, depending on the conditional variance Σn, which represents the

learning about the variance of the type of each trader using public order flow information. We

only need one conditional variance, as each trader can make an additional update using their type.

The recursive form of Σn in (12) crucially depends on the term (αn + βnγn−1), which captures

the intuition that each trader trades on her own type (with parameter αn), and on the expected

type of the counterparty (with parameter βn), about which they learned in the previous round

with parameter γn−1 (see Equation 6).

Proof Part 2: The strategy of trader A.

The parameters αn and βn are used by both traders. Trader A will choose trades xA,n to

maximize the objective function (3) (taking as given αn and βn used by B). In turn, this will

identify αn and βn using Equation (4). We identify parameters αn and βn through a backwards

induction of the objective function (3).

The problem potentially has eight state variables: pn, qn, eθA,n, eθB,n, which can be tracked
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on and off the equilibrium path (see discussion in the previous section). It turns out that the

value function of trader A in Equation (3) can be summarized by a set of only three composite

state variables:

Y (1)
n = θ̃A − pn, Y (2)

n = êθB,n − pn, Y (3)
n = êθB,n − qn. (13)

The first quantity captures the private valuation of A, the second is A’s belief of B’s private

valuation, and the third is necessary in forming A’s belief on B’s expectation of θ̃A (the higher

order expectation in Equation 8).

We start at the last period N , and work our way backwards. Trader A’s profit of the last

trade N can be expressed as xA,NY
(1)
N , which equals the value function

V alueAN =E
[
xA,NY

(1)
N |θ̃A, y1, . . . , yN−1

]
,

=E
[
xA,N (Y

(1)
N−1 − λ

(
zAN + xA,N + (αN + βN )Y

(2)
N−1 + βN (γN−1 − 1)Y

(3)
N−1

)
|Y (1)
N−1, Y

(2)
N−1, Y

(3)
N−1

]
,

=xA,N (λxA,N + (Y
(1)
N−1 + (αN + βN )Y

(2)
N−1 + βN (γN−1 − 1)Y

(3)
N−1).

(14)

In line 2 we fill in the Markovian recursion of Y
(1)
N (defined in Equation A.12 in the Appendix),

the price and order flow equations (2 and 1), the linear strategy of B (4), and substitute in the

unexpected order flow zAN (9). Crucially, the equation shows how the value function in period

N depends on the state variables of period N − 1 and the parameters. In fact, the three state

variables are chosen such that the value function takes this recursive structure with Markovian

dynamics.

It is easy to see that the value function is quadratic in xA,N . We proceed by taking the first

order condition to identify the optimal trade x∗A,N :

x∗A,N =
Y

(1)
N−1 − λ

(
(αN + βN )Y

(2)
N−1 + βN (γN−1 − 1)Y

(3)
N−1

)
2λ

. (15)
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A quadratic value function yields optimal strategies that are linear in the three state variables,

and we define constants {b1,N , b2,N , b3,N} such that

x∗A,N = b1,NY
(1)
N−1 + b2,NY

(2)
N−1 + b3,NY

(3)
N−1. (16)

In the appendix we show that the three constants exist for any period n, and that they can be

easily identified using a backward recursion.

On the equilibrium path, êθB,n = eθB,n, such that the third state variable becomes a linear

combination of the other two. Just two state variables are sufficient to describe the system,5

allowing us to write

x∗A,N =

(
b1,N + b3,N

γN−1
1− γN−1

)
Y

(1)
N−1 +

(
b2,N − b3,N

γN−1
1− γN−1

)
Y

(2)
N−1. (17)

This solution corresponds directly to the conjectured linear strategy of Equation. (4), and identifies

αN and βN in Equation. (12).

We insert the optimal trade (16) into the value function (14), and obtain a function that

is quadratic in the three state variables of period N − 1. It further depends on the constants

b1,N , b2,N , b3,N and parameters αN , βN and γN−1. Now, the value function V alueAN−1 consists

of two parts: the trade, xA,N−1Y
(1)
N−1, and the time N − 1 expectation of V alueAN . We iterate

the system backwards one period using the recursive equations for the three state variables (A.12

– A.13 in the Appendix). We again take the first order condition to obtain x∗A,N−1, identify

b1,N−1, b2,N−1, b3,N−1, and subsequently αN−1 and βN−1, and insert the optimal trade into the

value function. We repeat the procedure until period 1.

In each period n, the system of equations (12) is a fifth-order polynomial in Σn. The correct

solution is the fourth root (given by economical restrictions on the parameter space and the second

order condition).

5Since Y
(2)
n := êθB,n−pn = qn+γn(θ̃A−qn)−pn and that êθB,n is a linear function of θ̃A and qn (see Equation 6),

on the equilibrium path the third state variable becomes a linear combination of the first two: Y
(3)
n =

γn

(
Y

(1)
n −Y (2)

n

)
1−γn .
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2.3 Testable predictions

In this section we develop a set of model predictions that follow directly from Theorem 1. Later,

we take these to the data.

We first introduce the concept of “natural countparties,” which is the situation when one

trader wants to buy and the other sell:

Definition 2. Traders A and B are called “natural counterparties” in period n when sign(θ̃A −

pn) 6= sign(θ̃B − pn).

The next lemma shows that a traders’ aggregate quantity depends on the private value of the

other trader, and that the (absolute) size increases when both traders are natural counterparties.

Lemma 1. Endogenous order sizes

A larger realization of type B (θ̃B) reduces the cumulative net trading volume by A,
∑N

n=1 xA,n,

i.e., she buys less or sells more. Further, the trades by A and B have a multiplier effect:
∂xA,n+1

∂xB,n
<

0,∀n, ceteris paribus. This multiplier effect is persisting, affecting trades in period n+ 1 and all

remaining trading periods.

A unit increase in θ̃B increases trade xB,n by αn, ceteris paribus (Equation 4). The accompanied

price change ∆pn = λαn, and the change in A’s expectation of θ̃B is ∆eθB,n = γnδnαn (see

Equations 5 and 6). This causes a change in A’s trade in the next period of ∆xA,n+1 = −(αn+1 +

βn+1)∆pn + βn+1∆eθA,n < 0.6 There is a multiplier effect, as the change ∆xA,n+1 reinforces

the trades by both A and B in all subsequent rounds. These effects go through the same two

channels: the changes in price and the expectation of the other’s type. By symmetry, the effect

of a change in θ̃A on xB,n is identical. The multiplier effect leads to larger cumulative absolute

trading volumes by both traders, and the absolute volumes increase in |θ̃A − θ̃B|, i.e., it is larger

when both traders are natural counterparties.

Lemma 2. Detecting a counterparty

An investor learns about the private value of the counterparty using the order flow process and

6The change in ∆xA,n+1 < 0, which follows from the fact that βn+1 < 0 and (αn+1 + βn+1) > 0 for all n.
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his own type, as stated by the Bayesian updating rule in Equation 6. Further, order flows and

price changes are informationally equivalent, such that the Bayesian updating can be expressed in

terms of price changes and trader type.

Intuitively, if trader A observes more buying pressure than anticipated, either trader B or the

noise traders have been buying more. As a Bayesian, he thus revises his expectation of type B

eθB,n upwards. Note that the order flow process is informationally equivalent to the price process

since pn = pn−1 + λyn.7

Lemma 3. Trading costs

The per-share trading costs of A in period n, defined as sign(xA,n)(pn−p0), are lower when there

is a natural counterparty, i.e., when the counterparty trades in opposite direction to the current

order.

We calculate trading costs by comparing the realized price to the price at start of the trading

game p0. Rather mechanically, if for example A is buying, then selling pressure by B reduces the

price and accordingly A’s trading costs.

2.4 Numerical example

In this section we offer a numerical example. Section A.2 in the Appendix describes a procedure

to find the numerical solution.

We first show the equilibrium parameters, which are all fixed before trading begins (but after

the realization of the exogenous parameters, N , λ, σ2e , and Σ0). We are also interested in the

evolution of the state variables: the average quantities traded, the price, and the beliefs about

the type of the counterparty. These are obtained via a simulation of the random variables in the

game (i.e., the noise trades and the types of the two traders).

2.4.1 Model parameters Figure 1 shows the equilibrium parameters in a numerical example.

We take a game of N = 10 trading rounds, and set the variance of noise trading each period to

7In the empirical analysis, we will use realized spreads to proxy for price changes in the price process.
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Figure 1 Equilibrium strategies and learning about counterparties: Numerical ex-
ample.

We use a numerical example to illustrate the equilibrium strategies and the conditional variance of the types. In
Panel A, the parameter αn represents the trading aggressiveness on ones own type (θ̃A − pn−1), and parameter

βn on the expected type of the counterparty (E
[
θ̃B − pn−1

]
). Panel B shows the conditional variance of type B,

using as information set public order flow and θ̃A (left panel), or only public order flow (right panel). We use the
following exogenous parameter values: N = 10 trading rounds, variance of noise trade per round is σ2

e = 1, and
variance of private valuation σ2

θ = Σ0 = 1, exogenous price impact λ = 1. In each figure we plot the parameters for
a lower variance of private valuation (Σ0 = 0.5), and higher one (Σ0 = 1).
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one. We look at two cases: a low variance of the private valuations (Σ0 = 1/2) and a high one

(Σ0 = 1). We learn the following.

• The parameters αn represent the trading aggressiveness of A on his own private valuation

(θ̃A − pn−1). The top left panel shows a clear J-shape: α is approximately 0.32 in early

periods, but increases to 0.55 in the last period. The explanation of the J-shape is as follows.

By symmetry, trader B follows a strategy with identical parameters. Aggressive trading by

B moves the price, which, in expectation, increases the magnitude of A’s private valuation

(θ̃A − pn−1),8 meaning A can trade more aggressively in turn.

• The parameters βn represent the trading aggressiveness on the expected type of the coun-

terparty B. This parameter is negative, meaning A trades in the opposite direction of the

expected valuation of B. Effectively, A provides liquidity to B (i.e., pushing back the price

pressure caused by B). This is a form of market making, which is profitable to A because the

price pressure caused by B is independent of A’s own private valuation. The βn follow an

inverted J-shape: the magnitudes increase over time as A gradually infers more precisely the

private value of B, and can thus better predict to the trades by B (and provide liquidity).

• These two effects reinforce each other in equilibrium. That is, as time passes trader A

expects B to trade more aggressively on B’s valuation (through an increase in αn) and more

liquidity provision by B (through an increase βn), which together allow A to trade more

aggressively on his private valuation. In turn, B anticipates A to trade more aggressively,

which allows him to trade more aggressively as well. Effectively, the two traders gradually

coordinate their trading to maximize gains from trade.

• The bottom panel of figure 1 shows the conditional variance of the type of trader B. The

right figure plots results using as information set only public order flow, and the left figure

using both public order flow and the realization of type A, θ̃A. For the solid black lines,

the conditional variance starts at one and for trader A it reduces fairly linearly to 0.41 in

8The private valuation of A is normally distributed, centered around p0. By adding independent price pressures
by B, the expected value of |θ̃A − pn−1| increases.
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round 10. There is substantial learning. Using only public information (right panel) there

is substantially less learning, as the conditional variance reduces to 0.63 in round 10. As is

typical with learning about noisy variables, when the starting variance is lower, we see that

traders learn less about each others types.9

2.4.2 State variables In this subsection we track the evolution of the state variables. We

are interested in three particular cases: when the two traders are natural counterparties (i.e., a

buyer and a seller); when one is a buyer and the other is neutral; and when both are buyers. To

represent the three cases, we fix θ̃A = 1, and choose θ̃B = {−1, 0, 1}.10 The initial price is 1,000

to which these private values are added. We further choose the same parameters as the game in

Figure 1, and simulate 1,000 paths of the noise trades. As before, we consider two cases: Σ0 = 1

and Σ0 = 1/2.

Figure 2 shows the average cumulate quantities traded by the two traders. In the left panel,

when θ̃B = −1, both traders are natural counterparties and we see that they each trade in a

fairly linear fashion over time, accumulating 3.63 shares in round 10. In the middle panel, when

trader B is neutral, we see that A trades only 2.09 shares (57% of the first case), while B sells

1.53 shares. Even though the private valuation of B is zero, the buying pressure by A quickly

generates a profitable selling opportunity. In the right panel both traders are natural buyers, and

each accumulate only 0.65 shares (18% of the first case).

The top panel of Figure 2 shows the equilibrium prices. In the left panel, when θ̃B = −1,

the trading pressures of both parties cancel out, and the price remains flat, hovering around

the starting price of 1,000. This variation is due to the price pressure of noise traders. In the

middle and right panel the price quickly increases to the average of the two private valuations

(1000.50 and 1001 respectively).11 We see that the price eventually centers between the two

9A low initial variance implies that variation in order flow mostly represents noise trades, meaning it has a low
signal to noise ratio and learning occurs only slowly.

10While we fix the realization of both types, the traders do not know this and play the game as if the types were
drawn from a normal distribution.

11In the last periods of the right panel the price increases beyond 1001. While both traders have a private
valuation of 1, their expectation of the counterparties’ type is only 0.55 (see bottom panel). Therefore, with a price
of 1001 they expect the counterparty to sell, and accordingly both buy a little more with parameter βn. This effect
is solely caused by fixing the types to equal one in this example; and it would not occur if we randomly draw the
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Figure 2 Simulation: cumulative order flows.

We plot the average cumulative net order flow of both traders over time. Specifically, we fix the realization of
θ̃A = 1, and vary θ̃B = {−1, 0, 1} for the three panels. This setup reveals the three broad cases where trader B is a
natural counterparty (left panel), is neutral (middle panel), or trades in the same direction (right panel). We use
the parameter values of Figure 1, simulate 1,000 paths of noise trades, and take averages.
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private valuations, at which point the buying price pressure of one gets canceled by the selling

pressure of the other. We observe that the private valuation of the counterparty strongly affects

a traders the overall trading volume.

The bottom of Figure 2 shows the beliefs the traders form about the type of their counterparty.

Type A is fixed to θ̃A = 1, and in each panel trader B forms (almost) identical expectations about

it. When Σ0 = 1, the expectation E
[
θ̃A|θ̃B, y1, . . . , yt

]
increases to 1000.58 in period 10, meaning

that 0.58 of the 1 unit private valuation is learned. Trader A learns in a similar fashion about

type θ̃B, which is -0.60 in panel 1, -0.015 in panel 2 and 0.58 in panel 3. The slight asymmetries

are due to the sampling variance of noise trading, which shrink as the number of simulations

increases.

types.
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Figure 3 Simulation: price path and expected value counterparty.

We plot the average price path (top panel) and belief of the private valuation of the counterparty (bottom panel).
We set the price p0 to 1000 and fix the realization of θ̃A = 1 (such that her private valuation is 1,001). We consider
three cases by varying θ̃B = {−1, 0, 1}. This setup reveals the three broad cases where the traders are natural
counterparties (left panel), one trader is neutral (middle), or trading in the same direction (right panel). We use
the parameter values of Figure 1, and average over 1,000 simulated paths of noise trades.
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3. Empirical Analysis

In this section, we test the three key empirical predictions of the model. We wish to answer the

following questions:

• How do institutional orders interact? What are the conditional probabilities of the direction

of parent orders: do buys follow up sells (and vice versa)? How does trading pressure by

existing parent orders affect the size of new parent orders?

• How can a trader find a counterparty, i.e., what is the detection mechanism? Can an investor

analyze short-term price patterns to detect the presence of a counterparty in real time?

• What is the impact on trading costs as a result of strategic trading by counterparties? How

large is the expected cost saving of having a counterparty?

Section 3.1 presents an overview of the institutional setting of the Nasdaq Helsinki mar-

ket. Section 3.2 describes our data collection from public and proprietary sources, and provides

summary statistics. Finally, Sections 3.3-3.5 address the three sets of questions raised above,

respectively.

3.1 Institutional Setting

The investigated market segment for companies domiciled in Finland and listed on the Nasdaq

Nordic Exchange [hereafter Nasdaq Helsinki] is similar to other European (and Asian) exchanges,

where trading is conducted electronically in a central limit order book with no designated liquidity

suppliers. Trading opens with an auction at 10.00 and closes at 18:30 after a relatively long post

trading period that ends with a randomized closing auction. Off-market crossings are reported

immediately for smaller trades, while larger blocks can be reported with a delay. During our

sample period, the minimum tick-size is e0.01 for all sample stocks.

Since 2006, trading on the Nasdaq Helsinki market is pre-trade anonymous. However, broker

dealers must report their trades to the central shareholder depository, which is administered by

Euroclear Finland Ltd. Thus, all trades conducted on the Nasdaq Helsinki market segment for
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Finnish stocks are reported to Euroclear, including trades in the upstairs market, dark pools, and

those internalized within a brokerage firm.12

Despite its relatively small size, the Finnish stock market has become a significant part of the

global portfolio. The Finnish stock market is home to well known companies in the technology

sector, and their presence may also have alerted international investors to the other large compa-

nies at the exchange, typically in the engineering, forestry and resources industries. During our

sample period, foreign investors held on average 61% of the market capitalization of the exchange,

which is equivalent to approximately 235 billion Euro by the end of our sample period. 18% of

Nokia, the largest capitalization company on the exchange, is held by 13f registered U.S. institu-

tional investors during the period. Further, most of the approximately 200 common stocks listed

during the period had foreign ownership of more than 1%. Hence, the results we draw from this

dataset should have implications for our general understanding of financial markets, particularly

in the context of institutional investors who operate globally.

3.2 Data

We obtain investor level transaction data for all Finnish listed firms from Euroclear Finland Ltd.

for the period January 1, 2007 to December 31, 2007.13 For each trade, the data contain the

ISIN, date and time of trade, trade volume and price, and a shareholder account level identifier

for the investor on both the active and passive sides of the transaction. These data are available

until the end of 2007, after which the datasource contains transactions netted at the daily level.

We match the Euroclear data with tick-by-tick level transaction data provided by Nasdaq

Helsinki and quote data obtained from Thomson Reuters Tick History at the millisecond level.

Shares outstanding and adjusted closing price data are obtained from Standard and Poor’s Com-

pustat. We focus on transactions made during market open hours from 10:00 am to 18:30 pm.

12Overseas trading in American Depository Receipts is also be reflected in the depository but is subjected to
extensive aggregation through nominee accounts.

13This dataset has also been used by Grinblatt and Keloharju (2000), Grinblatt and Keloharju (2001), Grinblatt,
Keloharju, and Linnainmaa (2012), Linnainmaa and Saar (2012) and Berkman, Koch, and Westerholm (2014).
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3.2.1 Identifying Parent Orders A parent order is a large order that is split up and executed

as several child orders. We follow van Kervel and Menkveld (2018) and Korajczyk and Murphy

(2018) to infer parent-order information from child trade executions, with several adjustments to

account for the lower liquidity of Nasdaq Helsinki.

First, we identify potential parent orders by aggregating all child executions by a single

institution for each stock and each day. Following the approach in the literature, a parent order

extends over multiple days if there is a child trade in the last hour of one trading day and a child

trade in the first half hour of the following trading day. Next, these potential parent orders are

included in our final sample of parent orders if the following conditions are satisfied:

• Large parent orders. For stocks in the OMX Helsinki 25 index, we include orders that have

an absolute net dollar volume above $500,000, where the net dollar volume is the difference

between the buy dollar volume and the sell dollar volume of the entire parent order. For

stocks outside of the OMX Helsinki 25 index, we include orders that have an absolute net

dollar volume above $50,000.

• High directionality. We include orders with directionality above 0.9, where directionality is

calculated as the absolute value of the difference between buying and selling dollar volumes,

divided by the total volume for each parent order.

3.2.2 Summary Statistics for Orders and Transaction Costs Table 1 presents summary

statistics for parent orders executed in Finnish stocks from January 1, 2007 to December 31, 2007.

The average order is $954,000 (Euros converted to USD at the sample average exchange rate),

and lasts 0.44 trading days (or 3.7 hours, given 8.5 trading hours in a trading day). Further,

10.7% of our parent orders execute over multiple days. The average number of child trades per

order is 34 but the median only 12. This suggests our sample consists of both parent orders that

execute with a large number of small child trades, as well as orders that execute using a few large

(block) trades.

Parent orders are executed fairly patiently, as the fraction of child trades traded actively

(i.e., with a market order) is 40% on average (similar to van Kervel and Menkveld (2018) for the
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Swedish market.) The orders have a 33.7% participation rate (parent order volume divided by

single-counted market volume). This high number is partly caused by a subset of orders executed

through a small number of larger block trades.

During the life of each order, we also track the volume executed by other institutional parent

orders that trade in the same direction (same sign) and in opposite direction (opposite sign).

We express these volumes as a fraction of (single counted) market volume. The average opposite

sign is 17.3% of market volume and the average same sign only 8.2%. The difference between

17.3% and 8.2% suggests that other overlapping orders are much more likely to trade in opposite

direction to the current order, meaning there is simultaneous buying and selling pressure. Further,

the overlapping volume by other parent orders is substantial given an order’s average participation

rate of 33.7%.

We measure transaction costs with the implementation shortfall in basis points. It is defined

as the percentage difference between the average price paid and the price at start of the parent

order, and is multiplied by minus one for sell orders. The sample average implementation shortfall

is 6.03 basis points which is fairly low but similar to van Kervel and Menkveld (2018) who find an

average of 8.27 basis point for Swedish stocks. The order size weighted average is 36 basis points.

3.3 Lemma 1: Endogenous order sizes

The model predicts that the trading volume of one investor strongly depends on the trading by

the other. For example, if the other investor is buying, the current investor is more likely to sell

(and will sell larger quantities). Specifically, lemma 1 states that an investor’s cumulative order

size increases with the presence of a natural counterparty (idefined as a trader with opposite

trading needs).

To test whether lemma 1 holds empirically we start with analyzing how the size and direction

of a new order is correlated with the characteristics of existing orders and market conditions. For

each new parent order, we take the 30 minutes interval prior to its start and track the buying

and selling volumes of existing parent orders. For example, for a new parent buy order, we sum

up the total child trade volume for existing buy orders (same sign) and for existing sell orders
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(opposite sign), in the 30 minutes prior to the start of the new parent order.

Next, we rank these volumes into terciles, separately for volumes that trade in the same

direction and in opposite direction to the incoming parent order. To make a fair comparison, we

use the same cutoff values for the terciles of the same sign and opposite sign volumes.14 We add

a category 0 if no volume is executed in the same or opposite direction.

Table 2 shows the frequency of new parent orders by the same sign and the opposite sign

volume terciles. We report the percentage of total orders in parentheses (N=30,092). The table

shows two main findings. First, comparing values of the upper triangle to the lower triangle, a new

order is generally much more likely to trade in opposite direction of existing orders. For example,

there are 2,636 cases where there is no volume in the same direction and a low-tercile volume in

the opposite direction. This is significantly higher than the 1,888 cases where there is no volume

in the opposite direction and a low-tercile level of volume in the same direction. Similarly there

are 1,883 cases where there is no volume in the same direction and a high-tercile volume in the

opposite direction, compared to 1,594 cases where there is no volume in the opposite direction

and a high-tercile level of volume in the same direction. This suggests that buying pressure from

existing orders attracts new selling orders (and vice versa), consistent with lemma 1 which states

that institutional order sizes are endogenous and reinforce each other.

Second, we see that large trading volumes in both directions are highly clustered. For example,

there are 1,104 cases with high same-sign and high opposite-sign volume, which is substantially

more than the 627 cases where there was a low same-sign and opposite-sign volume. The clustering

of high volumes is also consistent with lemma 1.

In a complementary analysis of order interaction, we investigate how the sign and log volume

of a new order are correlated with the characteristics of existing orders. The aim is to confirm the

results of Table 2 in a regression framework where we control for market conditions. We calculate

all independent variables in the 30 minute interval prior to order start. The 30 minute window

captures relatively recent market activity, given a typical order duration of three hours, which is

important in the model where a current trade affects the counterparty’s trade in the next period.

14The cutoff values are 2,226 shares between tercile 1 and 2, and 10,000 shares between tercile 2 and 3.
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Table 3 presents the results. Columns 1 and 2 show logit regressions, where the dependent

variable is equal to 1 for a new parent buy order and 0 for a new parent sell order. We include

only parent orders lasting for more than 30 minutes to fully execute to keep a consistent sample.

We present the marginal effects based on the means of the independent variables. In column 1

we see that for each additional existing sell order, the probability of a new buy order increases

by 4.1% (second row), which is economically sizable and statistically significant at the 10 percent

level. The impact of existing buy orders is -0.014 (first row) and insignificant. In column 2, for

each additional standard deviation increase in log sell volume by existing orders, the probability

of a new buy order increases by 2.7% = 0.007 ∗ 3.84 points.15 The magnitude of log buy volume

is virtually the same with a coefficient of 0.008.

The regressions further show that a positive return in the half-hour prior to order start

diminishes the probability of a buy order, which is consistent with investors strategically timing

the start of the order (see e.g., Hendershott, Jones, and Menkveld (2013)). Market volume and

volatility do not affect the direction of the new order, as expected.

For the remaining columns, we use the logarithm of buy or sell volume of the new parent

order as dependent variable. We only use the volume executed during the first 30 minutes of the

order’s life, to be consistent across parent orders and limit look-ahead bias. We see that each

additional existing sell order increases the volume of buy orders by 22.4% (column 3). Similarly,

each additional buy order increases sell volume by 18.3% (column 5). We obtain similar results

when we analyze the association between log volume of the new order and log of active order buy

and sell volumes. A one standard deviation increase in existing sell order volume increases new

buy volume by 15.7% = 3.84 × 0.041 (column 4). The effect of existing buy volume on new sell

volume is of similar magnitude, with a coefficient of 0.034 (column 6).

These are economically large effects, and we want to stress that we control for market volume

in the regressions. Thus, the impact of existing parent orders on new order size does not simply

go through an increase in market volume. Rather, institutional order sizes seem endogenous and

reinforce each other, as predicted by the model.

15The standard deviation of log active sell volume is large with 3.84, which stems from both outliers and many
observations where sell volume by existing institutional orders is zero.
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At this point, we want to stress an important caveat. The empirical results are mere correla-

tions, and we cannot interpret these as causal effects. In fact, obtaining causality is particularly

challenging given that the theory shows institutional orders are highly endogenous. Despite this

issue, we do believe we have shown that the empirical relations are consistent with the model.

3.4 Lemma 2: Order detection

We have shown that existing orders affect the direction and size of new orders. A much more

specific prediction of the model is that an institutional investor can detect the presence of a

counterparty by analyzing price patterns in the data. Specifically, lemma 2, states “An investor

learns about the private value of the counterparty using the order flow process and his own type,

as stated by the Bayesian updating rule in Equation 6.” The update rule can be easily expressed

in terms of price changes and trader type, since price changes depend linearly on order flows.

The intuition of detecting a counterparty is that if trader A observes more buying pressure

than anticipated (i.e., conditional on his own trades), either trader B or the noise traders have

been buying more. As a Bayesian, A thus revises upwards the expectation of the private value of

B. The converse holds if there is more selling pressure than anticipated.

Finding an empirical proxy for this learning process is challenging for two reasons. First,

learning occurs sequentially in the model—traders update after each trading period—but empiri-

cally, it is not clear what constitutes a trading period. Second, the parameters with which traders

update change over the lifetime of the order. We therefore take a different approach, and argue

that an investor can learn about the presence of counterparties by analyzing the realized spread

of trades. The realized spread is a proxy for the reversal of prices and similar to the resiliency of

the market. Intuitively, the price pressure of a buyer gets reduced when a large seller is active,

i.e., the price reverts and the realized spread increases. Conversely, if both traders are buying,

the price pressures reinforce each other and the realized spread will turn out lower.

The definition of the realized spread makes clear how it is affected by an institutional coun-
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terparty:

RSi = Di
1

Ki

(
Ki∑
k

Ln(Pk)− Ln(Mk+τ )

)
, (18)

where Di = {−1, 1} if parent order i is a sell or buy order, respectively. The realized spread of a

trade is the difference between the price Pk and the future midpoint Mk+τ taken τ trades later.

Indeed, aggressive trading by counterparties affects this future midpoint Mk+τ , and therefore the

realized spread. We measure the realized spread at the parent order level by averaging over all

k = 1, . . . ,Ki trades executed on Nasdaq Helsinki during the lifetime of the parent order.

One remark is in order. The realized spread is typically used as a proxy for the profits to

market markers.16 This interpretation is no longer valid in our model. The market maker directly

earns the instantaneous price impact (λ), but does not face adverse selection from informed

traders. The reversals in prices across trading periods are caused by the order flows of the two

strategic traders. The proposed realized spread captures these reversals.

We tackle the question of whether a counterparty can be detected from the price process

with two analyses. In the first analysis, at the parent order level, we show that the realized

spread indeed correlates with the trading volume by other institutional investors in both the

same and opposite direction. We express these volumes as a fraction of overal volume in the

market, as detecting a counterparty presumably is more difficult when there is lots of trading by

non-institutional investors. This test exploits our rich dataset in which we observe the parent

orders of many institutional investors with exact information on when they traded. An important

benefit of using the realized spread, is that the realized spread is a statistic that can be constructed

by any investor, i.e., it does not require any proprietary data. In the second analysis, we show

that the realized spread measure can also identify counterparties in real time. Each parent order

is split up into 30-minute intervals, and we show that the realized spread in interval t predicts

institutional order flows by counterparties in interval t + 1. As such, we argue that the realized

spread can serve as a real-time detection mechanism.

16Traditionally, the effective spread is decomposed into a price impact and realized spread. The effective spread
is the instantaneous reward for the liquidity supplier, which, after subtracting the orders price impact to correct
for adverse selection, represents the liquidity supplier’s gross profit.
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3.4.1 Order detection and the realized spread Table 4 presents the results of a regression

of the realized spread during a parent order on order characteristics. The realized spread is

measured using mid-point prices 5, 10 or 20 trades from the original trade, and is averaged over all

trades to obtain a variable at the parent order level. Generally the results show that Opposite sign

%, the fraction of market volume traded by other parent orders in opposite direction, is positively

and significantly correlated with the realized spread, and increasingly so with larger horizons for

the mid-point benchmark. This supports our model prediction that a stronger (weaker) reversal

of prices for A correlates with more selling (buying) pressure by B.

The economic magnitudes are as follows. A one-standard deviation increase in opposite sign

% (25.4) increases the 5-trade realized spread from a sample average of 9.8 basis points to 10.6

basis points (25.4 × 0.033 = 0.84 basis points). The effect becomes substantially larger once we

look at the midpoint further in the future. A one-standard deviation increase in opposite sign %

increases the 10-trade realized spread by 25.4×0.092 = 2.3 basis points, and the 20 trade realized

spread by 4.6 basis points.

The magnitudes are similar for same-sign % in all three specifications (although the sign

switches as expected). In fact, t-tests do not reject the null that the magnitude is equal in any

of the specifications.17 This implies that if the realized spread is used to detect the presence of

counterparties, it will pick up the net effect of other institutional investors (i.e., same sign minus

opposite sign order flow).

The coefficents of the other variables are as expected. Participation rate is insignificant in

all three specifications. Ln trade size is negative (or insignificant), suggesting that splitting up

an order into many small child trades (instead of a few large blocks) is correlated with a lower

realized spread. Overall, the strongest predictor of the realized spread is the % of the order

executed with market orders. This effect is mechanical however, as an executed limit order has a

negative realized spread from the institutional traders point of view.

17Specifically, we test whether same-sign %= −1× opposite sign %. The p-values are 0.80, 0.55, 0.26 for the
three specifications, respectively).
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3.4.2 Order detection in real time We have demonstrated that the realized spread is cor-

related with the order flow by other institutional investors in the same and opposite direction at

the parent order level. However, if the realized spread is to be used as a detection device, we need

to dig deeper and show that it can predict other institutional flows in real time. To this end, we

split up parent orders into half-hour intervals and create a panel dataset. We then measure all

variables, including the realized spread, at the half-hour frequency. We are interested in estimat-

ing how the realized spread predicts future participation rate %, same sign %, and opposite sign

%.

Table 5 shows two sets of results. Panel A contains predictive regressions, using only lagged

values of all independent variables. Panel B shows the same regression but using contemporaneous

values. Given the highly endogenous nature of all variables, we offer both panels for completeness.

The theory predicts that the presence of a natural counterparty (i.e., more opposite-sign flow) (i)

increases the realized spread, which (ii) in turn causes the investor to trade more. We confirm both

effects. In panel A, we confirm that a higher realized spread in period t − 1 positively predicts

participation rate (coefficient of 0.044, column 1). A one standard deviation increase in the

realized spread after 10 trades (34.69 at the half-hour frequency) increases the participation rate

by 0.044∗34.69 = 1.52% relative to a sample average of 33.7%. In panel B we see that the realized

spread is contemporaneously correlated with opposite sign %, with a slightly larger coefficient of

0.056. These magnitudes do not seem large, but our measure is only a crude proxy which ignores

many other variables that are potentially informative of the presence of the counterparties.18

In Panel A column 1, we also see that lagged opposite sign % has a direct positive correlation

with contemporaneous participation rate. This effect holds after controlling for the realized spread,

and is directly consistent with Lemma 1 that order sizes of natural buyers and sellers reinforce

each other. Panel A further shows that all dependent variables are highly autocorrelated, with

AR(1) coefficients ranging between 0.33 and 0.467 across columns. This is a direct consequence

of the use of order splitting algorithms. Finally we observe that the coefficients on the realized

spread are of similar sign and magnitude in both panels. This again confirms that all variables

18Other candidate variables, for example, are the quoted liquidity on the bid and ask side in the order book, or
particular patterns in the size, number and frequency of new limit and market orders.
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are simultaneously determined. For this reason we do not estimate a VAR model with impulse

response functions, as cause and effect cannot be distinguished.

In summary, the estimations confirm lemma 1 that order sizes are endogenous, through the

positive correlation between Opposite sign% and Participation rate %, and lemma 2 that the

realized spread is a detection device (i.e., correlated with Opposite sign% ), which in turn positively

predicts future traded quantities.

3.5 Lemma 3: Counterparties and trading costs

Lemma 3 predicts that trading costs are lowest when the two traders are natural counterpar-

ties (i.e., one is a buyer and the other a seller). In this section we first investigate the impact

of overlapping orders on trading costs. We then analyze whether overlapping orders are more

information motivated or more liquidity motivated. This reveals the trading motives of the insti-

tutional investors and is the source of the trading cost advantage.

3.5.1 Implementation shortfall and order flow Column 1 in Table 6 reports the estimation

results for the correlation between implementation shortfall (IS) and market conditions and order

characteristics. The IS is defined as the difference in basis points between the average price paid

and the price at start of the parent order, and is multiplied by minus one for sell orders.

The variable Opposite sign % is negatively and significantly related to implementation short-

fall with a coefficient of -0.300. A one-standard deviation increase in the variable reduces the IS

by 25.4 ∗ 0.357 = 7.6 basis points (relative to a sample average of 6.03 basis points, Table 1).

Furthermore, the magnitude of the coefficient on Same sign% is very similar with 0.363. This

suggests that trading by other institutional investors affects trading costs linearly, and that the

relevant statistic is the net volume (i.e., same sign % minus opposite sign %).

Importantly, these coefficient are virtually identical to that of an orders own participation rate

(0.363). This suggests that trading by other institutions has a similar impact on implementation

shortfall as ones’ own order size. The literature typically finds that the main determinant of

institutional trading cost is order size, and the current results show that the trades by other
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institutional investors have an effect of similar magnitude.

The remaining coefficients carry the expected signs. Order size, volatility, and the percentage

of market order executions are all positively related to IS. The r2 of this equation is 9.3% which

is typical in the literature.

3.5.2 Overall, Permanent, and Transitory price impacts The model abstracts away from

asymmetric information and informed trading, but empirically we cannot ignore these effects. For

this reason, we use the approach of van Kervel and Menkveld (2018) to decompose an order’s

Overall Price Impact into a Permanent Price Impact and Transitory Price Impact. Specifically,

Overall Price Impact (OPI ) is the market adjusted stock return based on mid-quote prices from

the beginning of the parent order to the end of the parent order, Permanent Price Impact (PPI )

is the market adjusted stock return based on mid-quote prices from the beginning of the parent

order to the mid-quote price 24 hours after the end of the parent order, and Temporary Price

Impact (TPI ) is the difference between OPI and PPI. We are interested in how these variables

are affected by Same sign % and Opposite sign %.

The results in columns 2 to 4 in Table 6 further support our model predictions that the

Overall Price Impact is lower with an increased presence of Opposite sign% orders, obtaining a

coefficient of -0.426. The economic magnitude is sizable with −0.426× 25.4 = 10.82 basis points

per standard deviation shock, relative to the sample average OPI of 4.6 basis points. The OPI is

similar in nature to the implementation shortfall (column 1), which had a coefficient of -0.3. Here

too the impact of Same sign % is positive and a bit larger in magnitude (coefficient of 0.597).

The decomposition of OPI into a permanent and transitory component reveals an interesting

pattern: Same sign % increases PPI (0.806, column 3) while it decreases TPI (-0.21, column

4). This suggests that when multiple institutions trade in the same direction, they are likely to

trade on fundamental information (i.e., a high permanent price impact and a small (or negative)

reversal). The impact of Same sign % on PPI is twice as large as that of an orders own participation

rate (0.367). This means that the expected PPI of two investors trading 10% of market volume

each is 11.67 = 10∗ .367+10∗ .806 basis points, which is larger than a single investor trading 20%
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of market volume with a PPI of 7.34 = 20 ∗ .367 basis points. The reverse holds when Opposite

sign % increases, suggesting that when two institutional investors trade in opposite directions,

both are more likely to trade for liquidity reasons. This latter setting corresponds best to the

theoretical model, and explains why trading costs are lower when having counterparty: both

orders appear more likely to be liquidity motivated.

4. Conclusions

The dynamic interaction between strategic investors has become increasingly important with the

rise of order splitting algorithms and other dynamic trading strategies. We present a model

where two liquidity motivated traders signal and learn about each others’ private values in order

to maximize gains from trade. They effectively coordinate and accommodate each others’ orders,

in a process where trades by one push back the price pressure caused by the other.

As markets evolve and complex execution strategies are automated and executed faster, there

is a need for more work to provide guidelines on how institutional investors should adapt. Using

account level transaction data we show that order splitting and patiently waiting for a counter-

party can be an effective way to manage transaction costs. We also show how publicly available

data can be used to detect order flow in opposite direction to facilitate liquidity driven trading.

A. Appendix

A.1 Proof Theorem (1)

We prove the theorem in two parts, following the structure in the main text.

A.1.1 Kalman filter In this section we define the Bayesian updating parameters. To this end,

it is useful to first introduce zn, which is the unexpected order flow for an investor with only access

to public information (e.g., the market maker). Note the difference with zAn , which conditions on
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θ̃A as well.

zn :=yn − E [yn|y1, . . . , yn−1] ,

=yn − E [xA,n + xB,n|y1, . . . , yn−1] ,

=yn − E
[
αn(θ̃A − pn−1) + βn(eθB,n−1 − pn−1)+

αn(θ̃B − pn−1) + βn(eθA,n−1 − pn−1)|y1, . . . , yn−1
]
,

=yn − 2(qn−1 − pn−1)(αn + βn),

=en + (αn + βnγn−1)(θ̃A + θ̃B − 2qn−1).

(A.1)

In the third line we insert the strategies used by the two traders. In the fourth line we recognize

that qn represents the expectation, using public information only, of all terms θ̃A, θ̃B, eθB,n−1, and

eθB,n−1. The last line fills in the order flow equation.

The variables z1, . . . , zn are mutually independent, and the history of z1, . . . , zn is informa-

tionally equivalent to observing the history of y1, . . . , yn. We can easily obtain the conditional

variance

V ar [zn|z1, . . . , zn−1] = σ2e + (αn + βnγn−1)
2 (2Σn−1 + 2(Σn−1 − Σ0)) . (A.2)

The last term in brackets, (2Σn−1 + 2(Σn−1 − Σ0)), equals the conditional variance of θ̃A and θ̃B

plus two times the (conditional) covariance. We can now denote the conditional variance Σn by:

Σn := V ar(θ̃A|y1, . . . , yn) = V ar(θ̃B|y1, . . . , yn),

= V ar(θ̃A|z1, . . . , zn),

= Σn−1 − δ2nV ar(zn),

= Σn−1 −
Cov(zn, θ̃A)2

V ar(zn)
,

= Σn−1 −
(αn + βnγn−1)

2(Σn−1 + (Σn−1 − Σ0))
2

σ2e + (αn + βnγn−1)2 (2Σn−1 + 2(Σn−1 − Σ0))
.

(A.3)

To explicitly show that Σn is a forward recursion, depending on the solutions to α and β, we
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can rewrite it as:

Σn = Σ0
σ2e + Σ0

∑n
i=1(αi + βiγi−1)

2

σ2e + 2Σ0
∑n

i=1(αi + βiγi−1)2
with γ0 = 0. (A.4)

For the conditional mean of θ̃A using public information, denoted qn, we have the parameter

δn that solves the Bayesian update:

qn ≡ E
[
θ̃A|z1, . . . , zn

]
= E

[
θ̃A|z1, . . . , zn−1

]
+ znδn,

= qn−1 + znδn, where

δn =
Cov(zn, θ̃A|z1, . . . , zn−1)
V ar(zn|z1, . . . , zn−1)

δn =
(αn + βnγn−1)(Σn−1 + (Σn−1 − Σ0))

σ2e + (αn + βnγn−1)2 (2Σn−1 + 2(Σn−1 − Σ0))
.

(A.5)

In the second line we use the definition of qn from Equation 5, and the fact that zn is independent

from previous realizations. The third line defines coefficient δn, which we rewrite in the last

equation. Note the similarity with the conditional variance of Equation A.3.

In equilibrium, the recursion for γn is the parameter that solves the Bayesian update:

eθB,n ≡ E
[
θ̃B|θ̃A, z1, . . . , zn

]
= E

[
θ̃B|z1, . . . , zn

]
+ (θ̃A − E

[
θ̃A|z1, . . . , zn

]
)γn,

= qn + (θ̃A − qn)γn, where

γn =
Cov(θ̃A, θ̃B|z1, . . . , zn)

V ar(θ̃A|z1, . . . , zn)
=

Σn − Σ0

Σn
.

(A.6)

The third parameter rn is used for updating êθB,n, the belief on the equilibrium path (see
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Eq. 10) using zAn (Equation 9):

êθB,n := E
[
θ̃B|θ̃A, zA1 , . . . , zAn

]
,

= êθB,n−1 + rnz
A
n , eθB,0 = 0, where

rn =
Cov(zAn , θ̃B|zA1 , . . . , zAn−1)
V ar(zAn |zA1 , . . . , zAn−1)

,

rn =
(αn + βnγn−1)Σ0(Σ0 − 2Σn−1)

σ2e + 2(αn + βnγn−1)2Σ0(Σ0 − 2Σn−1)− σ2eΣn−1
.

(A.7)

A.1.2 Optimization trader A We first need the following lemma:

Lemma 4. Fix the trades of B, xB,n, by strategy (4), and consider the constants {δn, γn, rn}

defined in (A.5)-(A.7) and the conditional variance Σn in (A.3). Define the variable zAn as the

unexpected component of the order flow yn to trader A,

zAn := yn − E
[
yn|θ̃A, y1, . . . , yn−1

]
,

= yn − xA,n − αn(êθB,n−1 − pn−1)− βn(qn−1 + γn−1(êθB,n−1 − qn−1)− pn−1).
(A.8)

Here, zAn is independent of (θ̃A, y1, . . . , yn−1), and we have the properties

σ(θ̃A, z
A
1 , . . . , z

A
n ) = σ(θ̃A, z̃

A
1 , . . . , z̃

A
n )

êθB,n − eθB,n ∈ σ(θ̃A, y1, . . . , yn) = σ(θ̃A, z
A
1 , . . . , z

A
n ), n = 1, . . . , N.

(A.9)

Further, the three state variables,

Y (1)
n = θ̃A − pn, Y (2)

n = êθB,n − pn, Y (3)
n = êθB,n − qn. (A.10)

have Markovian dynamics:

Y (1)
n = Y

(1)
n−1 − λ(xA,n + zAn + (αn + βn)Y

(2)
n−1 + βn(γn−1 − 1)Y

(3)
n−1),

Y (2)
n = Y

(1)
n−1 + rnz

A
n − λ(xA,n + zAn + (αn + βn)Y

(2)
n−1 + βn(γn−1 − 1)Y

(3)
n−1),

Y (3)
n = Y

(2)
n−1 + rnz

A
n − δn

(
xA,n + zAn − (αn + βn)Y

(2)
n−1 + (2αn + βn(1 + γn−1))Y

(3)
n−1

)
.

(A.11)
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The value function in any period n is quadratic in the trade xA,n, and further the optimal

trade x∗A,n is linear in the state variables Y
(1)
n−1, Y

(2)
n−1, Y

(3)
n−1 with coefficients given by Proposition 1

and A.18, such that the value function is also quadratic in the state variables Y
(1)
n−1, Y

(2)
n−1, Y

(3)
n−1.

The coefficients of the optimal strategy (αn and βn) are obtained recursively.

Proof. The independence of zAn with respect to (θ̃A, y1, . . . , yn−1) follows from the first line in

Equation A.8 and the normality of all random variables.

Learning on and off the equilibrium path: σ(θ̃A, z
A
1 , . . . , z

A
n ) = σ(θ̃A, z̃

A
1 , . . . , z̃

A
n ).

The result implies that the information set of trader A does not change when he has deviated

in the past from the optimal strategy. This is proved by demonstrating that the process zAn in

(A.8) is unaffected by past deviations.

In any round k, suppose trader A deviates from the optimal order with a random quantity

ζk, and submits x′A,k = x∗A,k + ζk. We need to show that this deviations does not affect zAi ∀i ≥ k.

We first observe directly that this deviation does not affect zA,k defined in (A.8): the impact on

yk is offset by the change in xA,k. The deviation ζk increases yk, and affects expected type qk and

price pk (see 5 and 2). In round k + 1, the affected qk and pk in turn imply changes in xA,k+1

and xB,k+1 according to (4), and subsequently changes in yk+1. However, zA,k+1 in (A.8) remains

unaffected: the impact of ζk on yk+1 (first term) is exactly offset by the changes in the latter

terms.

We conclude that past deviations by A changes the state variables and also xB,n, but these

changes are fully predictable because B follows a strategy linear in the state variables and his type

(see (4)). The result is that the process zAn is unaffected. Accordingly, A can perfectly observe

êθB,n−1 − eθB,n−1, i.e., the difference of his expectation of θ̃B on the equilibrium path (updating

using zAn ) and off the equilibrium path (updating using yn).

This means that all the three state variables are observable.

Markovian dynamics of the state variables:
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The state variables take the following recursive form:

Y (1)
n := θ̃A − pn,

= Y
(1)
n−1 − λyn,

= Y
(1)
n−1 − λ(yn + zAn − zAn ),

= Y
(1)
n−1 − λ(xA,n + zAn + (αn + βn)Y

(2)
n−1 + βn(γn−1 − 1)Y

(3)
n−1).

(A.12)

In the second line we insert the price equation, and in the last line we use the definition of zAn from

Equation 9 to insert Y
(2)
n and Y

(3)
n . We replace yn by the state variables and the surprise compo-

nent of the order flow zAn , which simplifies the recursive iterations since E
[
zAn |Y

(1)
n−1, Y

(2)
n−1, Y

(3)
n−1

]
=

0. For the second state variable we have

Y (2)
n := êθB,n − pn,

= Y
(2)
n−1 + rnz

A
n − λyn,

= Y
(1)
n−1 + rnz

A
n − λ(xA,n + zAn + (αn + βn)Y

(2)
n−1 + βn(γn−1 − 1)Y

(3)
n−1).

In the second line, we replace êθB,n by Y
(2)
n−1 using Equation 10, and insert the price equation as

in A.12. The recursion for Y
(3)
n becomes

Y (3)
n := êθB,n − qn,

= Y
(2)
n−1 + rnz

A
n − δnzn,

= Y
(2)
n−1 + rnz

A
n − δn

(
xA,n + zAn − (αn + βn)Y

(2)
n−1 + (2αn + βn(1 + γn−1))Y

(3)
n−1

)
.

(A.13)

In the second line we use the definition of qn, which depends on zn (the unexpected order flow

from the market makers point of view). In the last line we replace zn by a part predictable to A

and the innovation zAn .

Quadratic value function:

This statement is proved using an induction argument. Suppose V alueAn+1 is quadratic in

xA,n+1. Since the optimal trade x∗A,n+1 is linear in the state variables Y
(1)
n , Y

(2)
n , Y

(3)
n (see (15)),
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inserting x∗A,n+1 into V alueAn+1 yields a function quadratic in the state variables. Then,

V alueAn = E
[
xA,nY

(1)
n + V alueAn+1|Y

(1)
n−1, Y

(2)
n−1, Y

(3)
n−1

]
. (A.14)

The first term is the new trade, equal to xA,n(θ̃A − pn), which is quadratic in xA,n since the

expected price pn depends linearly on xA,n. The second term is the period n expectation of

V alueAn+1, which is also quadratic in xA,n since the three state variables iterated to period n− 1

each depend linearly on xA,n (see the Markovian dynamics in (A.12)-(A.13)). Finally, the value

function in period N is quadratic, as we see in (14), such that, by induction, the function is

quadratic in all periods N − 1, . . . , 1.

As the value function is quadratic, the optimal trade x∗A,n is obtained with a standard first-

order condition. Verification of the second order condition confirms that we have a maximum.

Recursive strategy coefficients: The coefficients {b1,n, b2,n, b3,n}Nn=1 represent the aggres-

siveness with which A trades on the three state variables. These are obtained as follows. In period

N , the value function is

V alueAN =E
[
xA,NY

(1)
N |θ̃A, y1, . . . , yN−1

]
,

=E
[
xA,N (Y

(1)
N−1 − λ

(
zAN + xA,N + (αN + βN )Y

(2)
N−1 + βN (γN−1 − 1)Y

(3)
N−1

)
|Y (1)
N−1, Y

(2)
N−1, Y

(3)
N−1

]
,

=xA,N (λxA,N + (Y
(1)
N−1 + (αN + βN )Y

(2)
N−1 + βN (γN−1 − 1)Y

(3)
N−1).

(A.15)

In line 2 we fill in the Markovian recursion of Y
(1)
N (A.12), and substitute in the unexpected order

flow zAN (Eq. 9). The first order condition identifies the optimal trade x∗A,N , and accordingly the

constants {b1,N , b2,N , b3,N}:

x∗A,N =
Y

(1)
N−1 − λ

(
(αN + βN )Y

(2)
N−1 + βN (γN−1 − 1)Y

(3)
N−1

)
2λ

= b1,NY
(1)
N−1 + b2,NY

(2)
N−1 + b3,NY

(3)
N−1

(A.16)
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For period N − 1, we have

V alueAN−1 = E
[
xA,N−1Y

(1)
N−1 + V alueAN |Y

(1)
N−2, Y

(2)
N−2, Y

(3)
N−2

]
. (A.17)

We first fill in optimal trade x∗A,N (A.16), iterate the state variables back to period N − 2 using

(A.12), and again impose the linear structure of A.16. We now obtain {b1,N−1, b2,N−1, b3,N−1} as

a function of {b1,N , b2,N , b3,N} and parameters αN−1, βN−1, γN−2, δN−1.

The recursive nature of the system is such that we can identify them for any step n:

b1,n =(λb0,n)−1
(

1− b3,n+1δn + λ(−b2,n+1 + b1,n+1·

(−2 + λ(2b1,n+1 + 2b2,n+1 + αn+1 + βn+1) + 2b3,n+1δn + βn+1(−1 + γn)δn)
)
,

b2,n =(b0,n)−1
(
λb1,n+1(2αn + αn+1 + 2βn + βn+1)−

(αn + βn + 2λb22,n+1(−1 + λ(αn + βn)) + 2λ2b1,n+1(αn + βn)(b1,n+1 + αn+1 + βn+1))+

b2,n+1

(
− 1− 2λ2(αn + βn)(2b1,n+1 + αn+1 + βn+1)+

b3,n+1δn(αn+1 + βn+1 + 2(αn + βn)(b3,n+1 + βn+1(−1 + γn))δn)+

2λ(b1,n+1 + αn + αn+1 + βn + βn+1) + 2b3,n+1δn + βn+1(−1 + γn)δn

))
,

b3,n =(b0,n)−1
(

(λ(b1,n+1 + b2,n+1)βn+1(1− γn)(−1 + 2αnδn) + 2b23,n+1δn(1− 2αnδn − βn(1 + γn)δn))

+ βn(1− γn − 2λ(b1,n+1 + b2,n+1)(1− γn)(1− λ(b1,n+1 + b2,n+1 + αn+1 + βn+1))− βn+1γnδn)

− b3,n+1(1− 2αnδn + λ(2b1,n+1 + 2b2,n+1 + αn+1 + βn+1)(−1 + 2(αn + βnγn)δn))+

2b3,n+1δn(βnγn + βn+1(1− γn)(−1 + (2αn + βn + βnγn)δn))
)

(A.18)

where the constant b0,n is defined as:

b0,n = 2
(

1 + λ(b1,n+1 + b2,n+1)(−1 + λ(b1,n+1 + b2,n+1 + αn+1 + βn+1))−

b3,n+1δn + λ(b3,n+1(αn+1 + βn+1) + b1,n+1(2b3,n+1 − βn+1(1− γn)))+

λ(b2,n+1(2b3,n+1 − βn+1(1− γn)))δn + b3,n+1(b3,n+1 − βn+1(1− γn))δ2n

)
.

(A.19)
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These parameters are general, in the sense that they are optimal strategies even if trader A

deviated in the past (i.e., played off the equilibrium path).

The second order condition in period n− 1 is:

2λ (1 + (λ(b1,n + b2,n) + b3,nδn)(−1 + λ(b1,n + b2,n + αn + βn) + (b3,n − βn(1− γn−1)δn))) < 0,

n = 1, . . . , N.

(A.20)

A.2 Algorithm to obtain numerical solution

The exogenous model parameters are N, σe,Σ0, and λ. The key challenge is that the Baysian

parameters (δ, r, γ) and Σn equations are given by forward recursions, while the optimal strategies

(α, β and constants b1, b2, b3) by backward recursions. To find a fixed point where all values align

in both forward and backward recursion, we need to first “guess” a value for ΣN , solve the model

backwards from period N to 0, and confirm that the resulting Σ0 from the Σ-recursion corresponds

with the exogenously chosen Σ0. If the two deviate, we need to change our guess of ΣN and repeat

the exercise until convergence is sufficiently close. Fortunately, the relation between the initial

guess for ΣN and the implied Σ0 is monotonous, given the signs of the parameters in the Σ

recursion (A.3).

In detail, we use the following program. In period N we solve numerically the system of

equations for ΣN−1, γN−1, γN , αN , βN , δN , and rN using their respective recursions (the constants

b1,N , b2,N , b3,N are zero). We also impose on the solution the second order condition A.20, and

δN > 0,γN−1 < 0 as constraints. At time N this system has three roots, and in other periods it

has five roots. If the initial guess of ΣN is too far off, this may yield an empty set in which case

we change our initial guess and restart the program. We repeat this step for all other periods

including the equations for the constants b1, b2, b3. In time 0, we compare the implied Σ0 from

the recursion to the exogenously chosen Σ0.
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Table 1 Summary statistics

This table presents summary statistics for parent orders executed in Finnish stocks from January 1, 2007

to December 31, 2007. Order size is the total dollar volume of the parent order in USD thousands (Euros

converted to USD at the sample average exchange rate). Duration is the length of the parent order in

number of trading days. Market order % is the fraction of the parent order executed through market

orders, instead of limit orders. Directionality is the absolute value of the difference between buying and

selling dollar volumes, divided by the total parent order volume. Participation rate is the dollar volume of

the parent order, divided by the total dollar volume traded in the market (single counted) over the lifetime

of the order. Same sign (Opposite sign) is the total dollar volume of other parent orders trading in the

same (opposite) direction as the parent order, divided by the total dollar volume traded in the market

over the lifetime of the parent order. Implementation shortfall is the difference in basis points between the

average execution price and the price prevailing at start of the parent order, and it is multiplied by minus

one for sell orders.

Mean Std.Dev. Q1 Median Q3

Panel A: All parent orders (n=30,092)

Order size ($1000) 954 6,683 81.8 196 779
Number of child trades 34.6 110 5.00 12.0 32.0
Duration (trading days) 0.44 0.65 0.032 0.27 0.67
Market order (%) 40.0 31.0 14.3 34.1 60.0
Directionality (based on $ volume) 1.00 0.02 1.00 1.00 1.00
Participation rate (%) 33.7 30.2 8.41 23.6 53.3
Same sign (%) 8.21 14.6 0.00 0.00 10.6
Opposite sign (%) 17.3 25.4 0.00 3.54 26.2
Implementation shortfall (bps) 6.03 106 -23.8 -1.09 29.6

Panel B: Buys only (n=14,694)

Order size ($1000) 1,096 9,245 82.0 198 791
Number of child trades 36.6 139 5.00 12.0 33.0
Duration (trading days) 0.46 0.74 0.039 0.29 0.69
Market order (%) 41.0 31.0 16.7 37.5 61.5
Directionality (based on $ volume) 1.00 0.02 1.00 1.00 1.00
Participation rate (%) 33.4 30.1 8.23 23.3 52.7
Same sign (%) 8.49 14.8 0.00 0.00 11.4
Opposite sign (%) 17.2 25.4 0.00 3.45 26.5
Implementation shortfall (bps) 6.07 113 -24.4 0.00 30.1

Panel C: Sells only (n=15,398)

Order size ($1000) 819 2,384 81.5 195 771
Number of child trades 32.6 72.1 5.00 12.0 32.0
Duration (trading days) 0.42 0.55 0.026 0.24 0.65
Market order (%) 38.0 31.0 12.1 33.3 58.3
Directionality (based on $ volume) 1.00 0.02 1.00 1.00 1.00
Participation rate (%) 33.9 30.2 8.61 23.8 53.8
Same sign (%) 7.94 14.5 0.00 0.00 9.86
Opposite sign (%) 17.3 25.4 0.00 3.67 25.9
Implementation shortfall (bps) 6.00 99.2 -23.0 -1.85 29.3
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Table 2 Overlapping orders in same and opposite direction

This table presents the frequency of overlapping parent orders executed in Finish stocks from January 1,

2007 to December 31, 2007. For each new parent order, in the 30 minutes interval prior to its start we

find the total volume of child trades executed from existing parent orders. Next, we rank these existing

volumes into terciles based on whether the existing parent orders are trading in the same direction (same

sign) and in opposite direction (opposite sign) to the new incoming parent order. We add a category 0

if no volume is executed in the same or opposite direction. The table shows the frequency of new parent

orders for each same sign volume rank and opposite sign volume rank combination. We report the values

as a percentage of total orders in parentheses (N = 30, 092).

Volume rank (opposite sign)

0 1 2 3

V
o
lu

m
e

ra
n
k

(s
a
m

e
si

g
n
)

0 13,918 2,633 2,311 1,883
(46.3) (8.8) (7.7) (6.3)

1 1,888 627 414 191
(6.3) (2.1) (1.4) (0.6)

2 1,558 298 686 462
(5.2) (1.0) (2.3) (1.5)

3 1,594 149 376 1,104
(5.3) (0.5) (1.3) (3.7)
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Table 3 The impact of existing orders on the new orders’ sign and size

For the logit regressions, the dependent variable is equal to 1 for a new parent buy order and 0 for a new parent sell order. We present the

marginal effects based on the means of the independent variables. For the OLS regressions, the dependent variable is the log volume of the new

parent order executed during the first 30 minutes of the new order. All independent variables are calculated based on the 30 minute interval

prior to commence of the new order. Active parent buys (sells) is the count of the number of existing parent buy (sell) orders. Ln(Active

buy (sell) volume) is the logarithm of 1 + dollar buy (sell) volume from existing parent orders. Return is the stock return and $ Volume is

the total dollar volume transacted in the stock. Volatility is the log of the high price minus the log of the low price. We include only parent

orders lasting over 30 minutes. All regressions control for stock fixed effects. t-statistics clustered by stock are reported in parentheses. ***,

**, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Logit (Parent buy order) OLS

1 2
Buy volume Sell volume

3 4 5 6

Active parent buys (#) -0.014 0.008 0.183***
(-0.72) (0.33) (4.81)

Active parent sells (#) 0.041* 0.224*** 0.057*
(1.73) (7.65) (1.97)

Ln(Active buy volume) -0.008*** 0.005 0.034***
(-3.62) (1.04) (5.34)

Ln(Active sell volume) 0.007*** 0.041*** 0.007
(2.67) (6.80) (1.30)

Return -2.575*** -2.520*** 2.097 2.249 1.484 1.417
(-4.51) (-4.42) (1.21) (1.35) (1.17) (1.11)

Ln($ Volume) 0.001 0.004 0.114*** 0.101*** 0.117*** 0.109***
(0.16) (1.04) (7.78) (6.76) (9.12) (7.87)

Volatility -0.211 -0.259 -1.158 -1.354 1.692 1.385
(-0.54) (-0.66) (-0.79) (-0.99) (1.44) (1.11)

Constant 5.225*** 5.367*** 1.268*** 1.290***
(35.84) (35.96) (9.94) (10.24)

Observations 18,597 18,597 9,267 9,267 9,322 9,322
Adjusted/Pseudo R-squared 0.015 0.017 0.236 0.235 0.285 0.283
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Table 4 The correlation between the realized spread and institutional same sign and op-

posite sign flow.

The dependent variable is the average realized spread which proxies for price reversals (see Equation 18),

and we calculate it based on the midpoint price 5, 10, or 20 trades from the time of the original trade. We

average the realized spread (in basis points) over all trades on Nasdaq during the lifetime of the parent

order, and winsorize at the 1% level. Same sign % (Opposite sign % ) is the total dollar volume of other

parent orders trading in the same (opposite) direction as the parent order, divided by the total dollar

volume traded in the market over the lifetime of the parent order, expressed as a percentage. Participation

rate % is the total dollar volume of the parent order, divided by the total dollar volume traded in the

market over the lifetime of the parent order, expressed as a percentage. $ order size is the total dollar

volume of the parent order in USD thousands. Trade size is the average trade size of the child trades in the

parent order in number of shares. Volatility is the standard deviation of 30 minute stock returns in basis

points. Market order % is the number of child trades executed through market orders as a percentage of

all child trades in the parent order. Duration is the length of the parent order in number of trading days.

No counterparty is an indicator variable equal to 1 if there are no other parent orders executing during the

duration of the parent order. All regressions control for stock fixed effects. t-statistics clustered by stock

are reported in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels,

respectively.

Realized spread

5 10 20

Same sign % -0.037** -0.080*** -0.133***
(-2.38) (-3.62) (-3.28)

Opposite sign % 0.033*** 0.092*** 0.183***
(2.87) (5.18) (5.31)

Participation rate % 0.079 0.117 -0.033
(1.53) (1.23) (-0.20)

Ln($ order size) 0.617*** -0.135 -0.873*
(2.81) (-0.38) (-1.85)

Ln(Trade size) -1.147*** -0.748** 0.376
(-4.11) (-2.17) (0.74)

Volatility -0.010 -0.008 0.010
(-1.20) (-0.65) (0.48)

Market order % 0.348*** 0.302*** 0.229***
(10.32) (9.68) (8.31)

Duration -0.565** -0.365 -0.448
(-2.53) (-1.23) (-1.11)

No counterparty -0.159 -0.724 -1.652
(-0.39) (-1.02) (-1.65)

Observations 19,101 19,101 19,101
R-squared 0.225 0.105 0.055
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Table 5 Order detection in real time

The dependent variable is Participation rate %, Same sign %, Opposite sign % or Net opposite sign %, all

measured at 30 minute intervals. Participation rate % is the dollar volume of the parent order executed in

the 30 minute interval t, divided by the market dollar volume and expressed as a percentage. Same sign %

(Opposite sign % ) is the total dollar volume of other parent orders trading in the same (opposite) direction

as the parent order, divided by the total dollar volume traded in the market during t, and expressed as a

percentage. Net opposite sign % is the difference between Opposite sign % and Same sign %. All other

variables are defined in Table 4.

Participation rate % Same sign % Opposite sign % Net opposite sign %

Panel A: Lagged regressions

Realized spreadt-1 0.044*** -0.003 0.029*** 0.031***
(4.29) (-0.51) (2.91) (3.78)

Same sign %t-1 0.002 0.445*** 0.023*** -0.422***
(0.30) (36.72) (3.89) (-31.00)

Opposite sign %t-1 0.023*** 0.011*** 0.467*** 0.456***
(4.90) (3.32) (39.58) (38.77)

Participation rate %t-1 0.331*** -0.000 -0.011*** -0.010**
(28.85) (-0.05) (-2.68) (-2.01)

Order imbalancet-1 2.878*** 1.234*** 1.353*** 0.119
(6.41) (4.35) (5.25) (0.40)

Volatilityt-1 -0.064 -0.090 -0.005 0.086
(-0.57) (-1.08) (-0.04) (0.57)

Returnt-1 -0.422** 0.029 -0.424** -0.453**
(-2.08) (0.22) (-2.27) (-2.55)

Ln(Volume)t-1 -1.828*** -0.445*** -1.032*** -0.587***
(-14.09) (-3.86) (-9.72) (-4.81)

Constant 27.175*** 8.117*** 15.187*** 7.070***
(18.28) (6.58) (11.53) (5.59)

Observations 150,991 150,991 150,991 150,991
R-squared 0.174 0.206 0.251 0.205

Panel B: Contemporaneous regressions

Realized spreadt 0.135*** 0.009 0.056*** 0.047***
(8.95) (1.06) (4.05) (5.17)

Order imbalancet 13.621*** 4.612*** 11.007*** 6.395***
(11.26) (12.83) (10.63) (7.39)

Volatilityt -0.323 -0.153 -0.273 -0.120
(-1.31) (-0.72) (-0.83) (-0.48)

Returnt 1.699*** 0.390** 0.783*** 0.393**
(5.12) (2.42) (2.85) (2.01)

Ln(Volume)t -3.117*** -0.327 -1.174*** -0.847***
(-12.12) (-1.18) (-4.93) (-3.83)

Constant 42.721*** 8.928*** 18.130*** 9.202***
(16.68) (3.68) (7.59) (4.50)

Observations 176,134 176,134 176,134 176,134
R-squared 0.106 0.008 0.037 0.011

Panel C: Summary statistics of dependent and main independent variables

Mean Std.Dev.

Participation rate (%) 21.90 31.39
Same sign (%) 6.835 17.93
Opposite sign (%) 11.67 25.39
Realized spread 9.804 26.67
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Table 6 Implementation shortfall, price impact and same sign and opposite sign institu-

tional trading

The dependent variables are Implementation shortfall, overall price impact (OPI ), permanent price impact

(PPI ), and temporary price impact (TPI ). Implementation shortfall is the difference in basis points be-

tween the average execution price and the price prevailing at start of the parent order, and it is multiplied

by minus one for sell orders. OPI is the market adjusted stock return based on mid-quote prices from the

beginning of the parent order to the end of the parent order, in basis points. PPI is the market adjusted

stock return based on mid-quote prices from the beginning of the parent order to the mid-quote price 24

hours after the end of the parent order, in basis points. TPI is the difference between OPI and PPI.

Implementation shortfall, OPI, PPI and TPI are winsorized at the 1% level. Same sign % (Opposite sign

% ) is the total dollar volume of other parent orders trading in the same (opposite) direction as the parent

order, divided by the total dollar volume traded in the market over the duration of the parent order, ex-

pressed as a percentage. Participation rate % is the total dollar volume of the parent order, divided by the

total dollar volume traded in the market over the duration of the parent order, expressed as a percentage.

The remaining variables are defined in Table 4. All regressions control for stock fixed effects. t-statistics

clustered by stock are reported in parentheses. ***, **, and * indicate statistical significance at the 1%,

5%, and 10% levels, respectively.

Panel A: Regression results

IS OPI PPI TPI

Same sign % 0.357*** 0.597*** 0.806*** -0.210*
(5.13) (5.29) (5.53) (-1.94)

Opposite sign % -0.300*** -0.426*** -0.606*** 0.183**
(-6.36) (-6.06) (-5.07) (2.09)

Participation rate % 0.363*** 0.442*** 0.367*** 0.076
(7.06) (4.96) (3.19) (1.00)

Ln($ order size) 18.934*** 27.596*** 26.359*** 1.190
(11.70) (9.91) (7.91) (0.64)

Ln(Trade size) -15.619*** -21.964*** -16.340*** -5.604***
(-11.00) (-10.10) (-5.91) (-2.84)

Volatility 0.176*** 0.174*** 0.062 0.112*
(6.13) (3.49) (1.07) (1.95)

Market order % 71.632*** 0.341*** 0.442*** -0.102*
(11.17) (6.33) (5.08) (-1.90)

Duration -9.169*** -14.457*** -10.153** -4.275*
(-2.71) (-3.18) (-1.99) (-1.83)

No counterparty 1.460 4.466 1.936 2.471
(0.69) (1.63) (0.46) (0.70)

Observations 20,708 20,348 20,352 20,348
R-squared 0.093 0.055 0.023 0.002

Panel B: Summary statistics of price impact measures

Mean Std.Dev.

OPI (bps) 4.631 126.0
PPI (bps) 4.665 233.5
TPI (bps) -0.086 200.1
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